精英家教网 > 高中数学 > 题目详情
若函数g(x)=ax-x-a(a>0且a≠1)图象上有两个不同的点关于原点对称,则a的取值范围是
 
考点:基本不等式在最值问题中的应用
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:由题意,函数g(x)=ax-x-a(a>0且a≠1)图象上有两个不同的点关于原点对称可化为g(-x)+g(x)=0有非零的解,即a-x+x-a+ax-x-a=0,从而利用基本不等式求解.
解答: 解:由题意,g(x)=ax-x-a(a>0且a≠1),
函数g(x)=ax-x-a(a>0且a≠1)图象上有两个不同的点关于原点对称可化为
g(-x)+g(x)=0有非零的解,
即a-x+x-a+ax-x-a=0,
即a-x+ax=2a有非零的解,
则由a-x+ax>2知,
2a>2;
故a>1.
故答案为:a>1.
点评:本题考查了函数的性质与基本不等式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一段公路安装电线线路需要用80根电线杆,用一辆货车从堆放电线 杆的料场,每次装载8根电线杆,运到1050米远的施工地,在1050米处放一根,以后每隔50米放一根,将8根电线杆放完后,返回料场,再次装载,继续运送安装. 问:(1)这辆货车在安放完第一车8根电线杆后,返回料场,它的总行程为多少?
(2)这辆货车完成全部80根电线杆的运输任务,并返回料场,它的总行程为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,点P到两点(
2
,0),(-
2
,0)的距离之和等于4,设点P的轨迹为C,直线y=kx+1与C交与A,B两点.
(1)求点P的轨迹C的方程;
(2)线段AB的长是3,求实数k;
(3)若点A在第四象限,判断|
OA
|与|
OB
|的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2tan(kx-
π
3
)的最小正周期T满足1<T<
3
2
,求正整数k的值,并指出f(x)的奇偶性、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,O为坐标原点,点 F,T,R,S满足
OF
=(0,1),
OT
=(t,-1),
FR
=
RT
SR
FT
ST
OF

(1)当t变化时,求点S的轨迹方程C;
(2)过动点T(t≠0)向曲线C作两条切线,切点分别为A,B,求证:kTA•kTB为定值,并求出这个定值;
(3)在(2)的条件下,探索直线AB是否过定点,若过定点,求出该点;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某圆拱的示意图如图所示.该圆拱的跨度AB是36m,拱高OP是6m,建造时,每隔3m需要一个支柱,求A2P2的长(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内,若M到定点F1(0,-1)、F2(0,1)的距离之和为4,则M的轨迹方程为(  )
A、
y2
16
+
x2
4
=1
B、
x2
16
+
y2
4
=1
C、
y2
4
+
x2
3
=1
D、
x2
4
+
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱A1B1C1 D1-ABCD中,当底面四边形ABCD满足条件
 
时,有A1 B⊥B1 D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2-2x-3的图象与x轴交于两点A,B(xA<xB),与y轴交于点C,△ABC的外接圆的圆心为M(1,-1),斜率为3的直线l与⊙M交于不同两点E,F,且满足ME⊥MF.
(1)求点A,B,C的坐标及⊙M的半径R的值;
(2)求直线l的方程;
(3)设P是直线l上的动点,且点A,C在l的同侧,求||PA|-|PC||的最大值及取得最大值时点P的坐标.

查看答案和解析>>

同步练习册答案