精英家教网 > 高中数学 > 题目详情
5.计算:$\sqrt{6\frac{1}{4}}$-$\root{3}{3\frac{3}{8}}$+$\root{4}{0.0625}$-($\sqrt{π}$)0=$\frac{1}{2}$.

分析 利用根式的运算性质即可得出.

解答 解:原式=$\sqrt{(\frac{5}{2})^{2}}$-$\root{3}{(\frac{3}{2})^{3}}$+$\root{4}{0.{5}^{4}}$-1
=$\frac{5}{2}-\frac{3}{2}$+$\frac{1}{2}$-1
=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了根式的运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知:α、β为△ABC的内角且cosα=$\frac{1}{3}$,cos(α+β)=-$\frac{2}{3}$,求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a=3,求$\frac{1}{1+{a}^{\frac{1}{4}}}$+$\frac{1}{1-{a}^{\frac{1}{4}}}$+$\frac{2}{1+{a}^{\frac{1}{2}}}$+$\frac{4}{1+a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(x2+1)($\frac{1}{{x}^{2}}$-mx)5展开式中x2项的系数125,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.关于x的不等式2x2-3x+a≤0有唯一整数解,则实数a的取值范围为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB为圆O的切线,A为切点,过线段AB上一点C作圆O的割线CED(E在C、D之间),且∠BEC=∠DBC,求证:BC=CA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知z为复数,$\overline{z}$为z的共轭复数,且z$•\overline{z}$i+2=2z,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为(  )
A.-24B.84C.72D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=f(x)(x∈R)的图象如图所示,记y=f(x)的导函数为y=f′(x),则不等式x•f′(x)<0的解集为(-∞,0)∪($\frac{1}{2}$,2).

查看答案和解析>>

同步练习册答案