| A. | $\sqrt{6}$ | B. | $\sqrt{2}$ | C. | 2 | D. | $\sqrt{3}$ |
分析 设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),P在渐近线y=$\frac{b}{a}$x上,△OFP为等腰直角三角形,只能是∠OPF=90°或∠OFP=90°,均有∠POF=45°,运用直线的斜率公式和离心率公式,计算即可得到所求值.
解答 解:设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
F(c,0),P在渐近线y=$\frac{b}{a}$x上,
△OFP为等腰直角三角形,
只能是∠OPF=90°或∠OFP=90°,
均有∠POF=45°,
即有$\frac{b}{a}$=1,即a=b,c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{2}$a,
则e=$\frac{c}{a}$=$\sqrt{2}$.
故选:B.
点评 本题考查双曲线的离心率的求法,注意运用渐近线方程,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{6}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{3\sqrt{3}}{4}$ | C. | $\frac{9\sqrt{3}}{4}$ | D. | $\frac{27\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $\frac{1}{3}$ | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com