【题目】在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和.
(1)求的取值范围;
(2)设椭圆与轴正半轴、轴正半轴的交点分别为,是否存在常数,使得向量与共线?如果存在,求值;如果不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数,将的图象向右平移两个单位长度,得到函数的图象.
(1)求函数的解析式;
(2)若方程在上有且仅有一个实根,求的取值范围;
(3)若函数与的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为 (θ为参数),曲线 C2的极坐标方程为ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲线C1的普通方程和曲线 C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(0, )上的函数f(x),f′(x)为其导函数,且f(x)<f′(x)tanx恒成立,则( )
A. f( )> f( )
B. f( )<f( )??
C. f( )>f( )
D.f(1)<2f( )?sin1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A,B,C的对边分别是a、b、c,且2sin2A+3cos(B+C)=0.
(1)求角A的大小;
(2)若△ABC的面积S=5 ,a= ,求sinB+sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cos4x+sin2x,下列结论中错误的是( )
A.f(x)是偶函数
B.函f(x)最小值为
C. 是函f(x)的一个周期
D.函f(x)在(0, )内是减函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是公差为2的等差数列,数列{bn满足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求数列{an}的通项公式;
(2)求bn取得最小值时n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xoy中,F为椭圆E:的右焦点,过F作两条相互垂直的直线AB,CD,与椭圆E分别交于A,B和点C,D.
(1)当AB=时,求直线AB的方程;
(2)直线AB交直线x=3于点M,OM与CD交于P,CO与椭圆E交于Q,求证:OM∥DQ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx﹣ax2+ .
(I) 当a= 时,判断f(x)在其定义上的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 其中x1<x2 . 求证:
(i)f(x2)>0;
(ii)x1+x2> .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com