精英家教网 > 高中数学 > 题目详情
已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若,求实数k值.
(1)(2)

试题分析:(1)抛物线的焦点是(),则双曲线的.………………1分
设双曲线方程:…………………………2分
解得:…………………………5分
(2)联立方程:
……………………7分(未写△扣1分)
由韦达定理:……………………8分
          
代入可得:,检验合格.……12分
点评:第一小题利用定义首先求出2a也比较简单
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

动圆经过定点,且与直线相切。
(1)求圆心的轨迹方程;
(2)直线过定点与曲线交于两点:
①若,求直线的方程;
②若点始终在以为直径的圆内,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的一条渐近线的倾斜角为,离心率为,则的最小值为( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆上的一动点,且与椭圆长轴两顶点连线的斜率之积最小值为,则椭圆离心率为
A. B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线上的焦点,点在抛物线上,点,则要使的值最小的点的坐标为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

k为何值时,直线y=kx+2和椭圆有两个交点 (   )
A.—<k<B.k>或k< —
C.—kD.k或k

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的一个顶点和两个焦点构成等腰直角三角形,则此椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题14分)已知椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切,分别是椭圆的左右两个顶点,为椭圆上的动点.
(1)求椭圆的标准方程;
(2)若均不重合,设直线的斜率分别为,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线虚轴的一个端点为M,两个焦点为F1,F2,则双曲线离心率为

查看答案和解析>>

同步练习册答案