精英家教网 > 高中数学 > 题目详情

如图,正方体ABCD-A1B1C1D1的棱长为8cm,M、N、P分别是AB、A1D1、BB1的中点;(1)画出过M、N、P三点的平面与平面A1B1C1D1的交线以及与平面BB1C1C的交线;(2)设过M、N、P三点的平面与B1C1交于点Q,求PQ的长;


解析:

(1)设M、N、P三点确定的平面为α,则  α  与平面AA1B1B的交线为直线MP,设,则RN是α与平面A1B1C1D1的交线,设,则直线PQ就是所要画的平面α与平面BB1C1C的交线;

(2)正方体的棱长为8cm,B1R=BM=4cm,,故B1Q=4=(cm),在Rt△PB1Q中,B1P=4cm,B1Q=cm, (cm)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案