精英家教网 > 高中数学 > 题目详情
若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,a1=
3
5
a2=
31
100
,且an+1=
1
10
an+
1
2n+1

(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
(1)有条件知:an+1-
1
10
an=
1
2n+1
,①
所以{an+1-
1
10
an}
是公比为
1
2
的等比数列,
{an+1-
1
2
an}
是以首项为a2-
1
2
a1=
1
100
,公比为
1
10
的等比数列,
所以:an+1-
1
2
an=(
1
10
)n+1
,②
由①、②得an=
5
2
(
1
2n+1
-
1
10n+1
)

(2)Sn=a1+a2+…+an
5
2
(
1
4
1
102
)
+
5
2
(
1
23
-
1
103
)
+…+ 
5
2
(
1
2n+1
-
1
10n+1
)

=
5
2
[(
1
4
+
1
23
+…+
1
2n+1
)-(
1
102
+
1
103
+…+
1
10n+1
)]

=
11
9
+
1
36
1
10n
-
5
4
1
2n
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,a1=
3
5
a2=
31
100
,且an+1=
1
10
an+
1
2n+1

(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,对一切n∈N*,点(n,
Sn
n
)都在函数f(x)=x+
an
2x
的图象上.
(1)计算a1,a2,a3,并归纳出数列{an}的通项公式;
(2)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21)…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值;
(3)设An为数列{
an-1
an
}
的前n项积,若不等式An
an+1
<f(a)-
an+3
2a
对一切n∈N*都成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,数学公式数学公式,且数学公式
(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省长春十一中高一(下)期中数学试卷(理科)(解析版) 题型:解答题

若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,,且
(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案