精英家教网 > 高中数学 > 题目详情
若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,a1=
3
5
a2=
31
100
,且an+1=
1
10
an+
1
2n+1

(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn
分析:(1)利用an+1-
1
10
an=
1
2n+1
,判断{an+1-
1
10
an}
是公比为
1
2
的等比数列,求出an+1-
1
2
an=(
1
10
)n+1
,然后求数列{an}的通项公式;
(2)利用拆项法,把通项分解为两个等比数列,然后求数列{an}的前n项和Sn
解答:解:(1)有条件知:an+1-
1
10
an=
1
2n+1
,①
所以{an+1-
1
10
an}
是公比为
1
2
的等比数列,
{an+1-
1
2
an}
是以首项为a2-
1
2
a1=
1
100
,公比为
1
10
的等比数列,
所以:an+1-
1
2
an=(
1
10
)n+1
,②
由①、②得an=
5
2
(
1
2n+1
-
1
10n+1
)

(2)Sn=a1+a2+…+an
5
2
(
1
4
1
102
)
+
5
2
(
1
23
-
1
103
)
+…+ 
5
2
(
1
2n+1
-
1
10n+1
)

=
5
2
[(
1
4
+
1
23
+…+
1
2n+1
)-(
1
102
+
1
103
+…+
1
10n+1
)]

=
11
9
+
1
36
1
10n
-
5
4
1
2n
点评:本题主要考查等比数列的判断,数列求和的拆项法、等比数列的前n项和公式.考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{bn}定义如下:对于正整数m,bm是使不等式an≥m成立中的所有n中的最小值
(Ⅰ)若正项数列{an}前n和为Sn
Sn
1
4
与(an+1)2的等比中项,求an及bn通项;
(Ⅱ)若数列{an}通项为an=pn+q(n∈N*,p>0),是否存在p和q,使得bm=3m+2(m∈N*),如果存在,求出p和q的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,数学公式数学公式,且数学公式
(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,a1=
3
5
a2=
31
100
,且an+1=
1
10
an+
1
2n+1

(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省长春十一中高一(下)期中数学试卷(理科)(解析版) 题型:解答题

若数列{an}的项构成的新数列{an+1-Kan}是公比为l的等比数列,则相应的数列{an+1-1an}是公比为k的等比数列,运用此性质,可以较为简洁的求出一类递推数列的通项公式,并简称此法为双等比数列法.已知数列{an}中,,且
(1)试利用双等比数列法求数列{an}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案