精英家教网 > 高中数学 > 题目详情
在四棱锥中,底面为直角梯形,的中点.

(1)求证:平面
(2)求证:.
(1)证明过程详见解析;(2)证明过程详见解析.

试题分析:本题主要以四棱锥为几何背景考查线线垂直和线面平行的判定,突出考查空间想象能力和推理论证能力.第一问,证明线面平行,先利用一组对边平行且相等,证明是平行四边形,再根据线面平行的判定定理证明;第二问,先证明为平行四边形,再利用线面垂直的判定定理证明线面垂直,所以垂直面内的任意一条线.
试题解析:(1)连结,并连结
中点,
,且
∴四边形为平行四边形,
中点,又∵中点,

平面平面
平面.          6分

(2)连结
中点,∴.
中点,
为平行四边形,
,∵,∴,∵
平面
平面
.        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥中,
 
(Ⅰ)求证:
(Ⅱ)若的中点,求与平面所成角的正切值  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥,底面是边长为的正方形,⊥面,过点,连接
(Ⅰ)求证:
(Ⅱ)若面交侧棱于点,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,已知三棱柱的侧棱与底面垂直,分别是的中点,点在直线上,且
(1)证明:无论取何值,总有
(2)当取何值时,直线与平面所成的角最大?并求该角取最大值时的正切值;
(3)是否存在点,使得平面与平面所成的二面角为30º,若存在,试确定点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,PA垂直于圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E, F分别是点A在P B, P C上的射影,给出下列结论:
;②;③;④.正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S-EFG中必有(  )
A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面
C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形中,⊥面上的点,且⊥面交于点.
(1)求证:
(2)求证://面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条直线,是两个平面,下列能推出的是(          )
A.B.
C.D.

查看答案和解析>>

同步练习册答案