精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=loga (0<a<1)为奇函数,当x∈(﹣2,2a)时,函数f(x)的值域是(﹣∞,1),则实数a+b=

【答案】 +1
【解析】解:∵函数f(x)=loga (0<a<1)为奇函数,

∴f(﹣x)=﹣f(x),

即f(﹣x)+f(x)=0,

∴loga +loga =loga =0,

=1,

∴4﹣x2=b2﹣x2

即b2=4,解得b=±2,

当b=﹣2时,函数f(x)=loga =f(x)=loga(﹣1)无意义,舍去.

当b=2时,函数f(x)=loga 为奇函数,满足条件.

=﹣1+ ,在(﹣2,+∞)上单调递减.

又0<a<1,

∴函数f(x)=loga 在x∈(﹣2,2a)上单调递增,

∵当x∈(﹣2,2a)时,函数f(x)的值域是(﹣∞,1),

∴f(2a)=1,

即f(2a)=loga =1,

=a,

即1﹣a=a+a2

∴a2+2a﹣1=0,

解得a=﹣1±

∵0<a<1,

∴a= ﹣1,

∴a+b= ﹣1+2= +1,

所以答案是: +1.

【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两矩形ABCD与ADEF所在的平面互相垂直,AB=1,若将△DEF沿直线FD翻折,使得点E落在边BC上(即点P),则当AD取最小值时,边AF的长是;此时四面体F﹣ADP的外接球的半径是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}, (Ⅰ)求A∩B、(UA)∪(UB);
(Ⅱ)若{x|2k﹣1≤x≤2k+1}A,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到图2中△A1BE的位置,得到四棱锥A1﹣BCDE.
(Ⅰ) 证明:CD⊥平面A1OC;
(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱ABCD﹣A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,
(1)若E为DD1的中点,证明:BD1∥面EAC
(2)求证:AC⊥平面BB1D1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知直线l的斜率为k,它与抛物线y2=4x相交于A,B两点,F为抛物线的焦点,若 ,则|k|=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数 ,其中x为自变量,a为常数. (I)若当x∈[0,2]时,函数fa(x)的最小值为一1,求a之值;
(II)设全集U=R,集A={x|f3(x)≥fa(0)},B={x|fa(x)+fa(2﹣x)=f2(2)},且(UA)∩B≠中,求a的取值范围.

查看答案和解析>>

同步练习册答案