精英家教网 > 高中数学 > 题目详情
等差数列的通项为an=2n-19,前n项和记为sn,求下列问题:
(1)求sn
(2)当n是什么值时,sn有最小值,最小值是多少?
考点:等差数列的前n项和
专题:等差数列与等比数列
分析:(1)由已知条件求出等差数列的首项和公差,由此能求出Sn
(2)由Sn=n2-18n,利用配方法能求出n=9时,Sn有最小值S9=81.
解答: 解:(1)∵等差数列的通项为an=2n-19,
∴a1=2-19=-17,
a2=2×2-19=-15,
∴d=a2-a1=-15+17=2,
∴Sn=-17n+
n(n-1)
2
×2
=n2-18n.
(2)Sn=n2-18n
=(n-9)2-81,
∴n=9时,Sn有最小值S9=81.
点评:本题考查等差数列的前n项和的求法,考查当n是什么值时,sn有最小值,最小值是多少的求法,解题时要认真审题,注意配方法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C对应的边分别为a,b,c,且满足
a+b
c
=cosA+cosB
(1)判断△ABC的形状
(2)求
sinA•sinB
sinA+sinB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-x-2m+1>0
(1)若m=
3
2
,求出不等式的解集;
(2)若对任意实数x,已知不等式恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了4次试验,收集数据如下:
零件数x(个) 10 20 30 40
加工时间y(min) 60 68 75 85
(Ⅰ)求回归方程;
(Ⅱ)如果加工的零件是50个,预测所要花费的时间.(参考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

公差大于0的等差数列{an}的前n项和为Sn,{an}的前三项分别加上1,1,3后顺次成为某个等比数列的连续三项,S5=25.
①求数列{an}的通项公式;
②令bn=t Sn(t>0),若对一切n∈N*,都有bn+12>2bnbn+2,求t的取值范围;
③是否存在各项都是正整数的无穷数列{cn},使cn+12>2cncn+2对一切n∈N*都成立,若存在,请写出数列{cn}的一个通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足a3-a1=3,a1+a2=3.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若等差数列{bn}满足b1=a2,b3=a2+a3,求数列{bn}的前10项的和T10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|x|-|x+1|.
(1)求不等式f(x)≤0的解集A;
(2)若不等式mx+m-1>0对任何x∈A恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中满足到点A(3,0)距离为2,且到点B(0,4)距离为3的直线条数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+2xf′(1),则f′(2)=
 

查看答案和解析>>

同步练习册答案