精英家教网 > 高中数学 > 题目详情

过椭圆数学公式+数学公式=1的焦点F1作直线l交椭圆于A、B两点,F2是此椭圆的另一个焦点,则△ABF2的周长为________.

24
分析:由椭圆的定义可得,AF1+AF2=12,BF1+BF2=12,而△ABF2的周长为=AF1+BF1+AF2+BF2,从而可求
解答:由椭圆的定义可得,AF1+AF2=12,BF1+BF2=12
△ABF2的周长为AB+AF2+BF2=AF1+BF1+AF2+BF2=24
故答案为:24
点评:本题主要考查了椭圆定义的应用:(P为椭圆上一点,PF1+PF2=2a,),灵活应用定义是解决本题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C1:y2=4ax(a>0),椭圆C以原点为中心,以抛物线C1的焦点为右焦点,且长轴与短轴之比为
2
,过抛物线C1的焦点F作倾斜角为
π
4
的直线l,交椭圆C于一点P(点P在x轴上方),交抛物线C1于一点Q(点Q在x轴下方).
(1)求点P和Q的坐标;
(2)将点Q沿直线l向上移动到点Q′,使|QQ′|=4a,求过P和Q′且中心在原点,对称轴是坐标轴的双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
3
+
y2
4
=1
的焦点F与抛物线C:y2=2px(p>0)的焦点关于直线x-y=0对称.
(Ⅰ)求抛物线的方程;
(Ⅱ)已知定点A(a,b),B(-a,0)(ab≠0,b2≠4a),M是抛物线C上的点,设直线AM,BM与抛物线的另一交点为M1,M2.求证:当M点在抛物线上变动时(只要M1,M2存在且M1≠M2)直线M1M2恒过一定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于表中:
 x  3 -2  4  
2
 
3
 y -2
3
 0 -4  
2
2
-
1
2
(1)求C1、C2的标准方程;
(2)设直线l与椭圆C1交于不同两点M、N,且
OM
ON
=0
,请问是否存在这样的直线l过抛物线C2的焦点F?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
,斜率为1且过椭圆C1右焦点F的直线l交椭圆于A、B两点,且
OA
+
OB
与a=(3,-1)共线.
(1)求椭圆C1的离心率.
(2)试证明直线OA斜率k1与直线OB斜率k2的乘积k1•k2为定值,并求值.
(3)若
OM
=
3
5
OA
+
4
5
OB
,试判断点M是否在椭圆上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2003•朝阳区一模)已知:如图,过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点F(-c,0)作垂直于长轴A1A2的直线与椭圆c交于P、Q两点,l为左准线.
(Ⅰ)求证:直线PA2、A1Q、l共点;
(Ⅱ)若过椭圆c左焦点F(-c,0)的直线斜率为k,与椭圆c交于P、Q两点,直线PA2、A1Q、l是否共点,若共点请证明,若不共点请说明理由.

查看答案和解析>>

同步练习册答案