分析 通过Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$)计算出数列{an}前几项的值,并猜想通项公式,利用数学归纳法证明即可.
解答 解:∵Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),
∴a1=$\frac{1}{2}$(a1+$\frac{1}{{a}_{1}}$),
解得:a1=1或a1=-1(舍),
∴a1+a2=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$),即1+a2=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$),
整理得:${{a}_{2}}^{2}$+2a2-1=0,
解得:a2=$\sqrt{2}-1$或a2=$-\sqrt{2}-1$(舍),
∴a1+a2+a3=$\frac{1}{2}$(a3+$\frac{1}{{a}_{3}}$),即1+$\sqrt{2}-1$+a3=$\frac{1}{2}$(a3+$\frac{1}{{a}_{3}}$),
整理得:${{a}_{3}}^{2}$+2$\sqrt{2}$a3-1=0,
解得:a2=$\sqrt{3}-\sqrt{2}$或a2=$-\sqrt{3}-\sqrt{2}$(舍),
猜想:an=$\sqrt{n}$-$\sqrt{n-1}$.
下面用数学归纳法来证明:
①当n=1时,命题显然成立;
②假设当n=k(k≥2)时,有ak=$\sqrt{k}-\sqrt{k-1}$,
则ak+1=Sk+1-Sk
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\frac{1}{2}$(ak+$\frac{1}{{a}_{k}}$)
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\frac{1}{2}$($\sqrt{k}-\sqrt{k-1}$+$\frac{1}{\sqrt{k}-\sqrt{k-1}}$)
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\sqrt{k}$,
整理得:${{a}_{k+1}}^{2}$+2$\sqrt{k}$ak+1-1=0,
解得:ak+1=$\sqrt{k+1}-\sqrt{k}$或ak+1=-$\sqrt{k+1}-\sqrt{k}$(舍),
即当n=k+1时,命题也成立;
由①、②可知数列{an}的通项公式an=$\sqrt{n}$-$\sqrt{n-1}$.
点评 本题考查数列的通项公式,考查数学归纳法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com