精英家教网 > 高中数学 > 题目详情
7.在各项均为正数的数列{an}中,Sn为数列{an}的前n项和,Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$)求其通项公式.

分析 通过Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$)计算出数列{an}前几项的值,并猜想通项公式,利用数学归纳法证明即可.

解答 解:∵Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),
∴a1=$\frac{1}{2}$(a1+$\frac{1}{{a}_{1}}$),
解得:a1=1或a1=-1(舍),
∴a1+a2=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$),即1+a2=$\frac{1}{2}$(a2+$\frac{1}{{a}_{2}}$),
整理得:${{a}_{2}}^{2}$+2a2-1=0,
解得:a2=$\sqrt{2}-1$或a2=$-\sqrt{2}-1$(舍),
∴a1+a2+a3=$\frac{1}{2}$(a3+$\frac{1}{{a}_{3}}$),即1+$\sqrt{2}-1$+a3=$\frac{1}{2}$(a3+$\frac{1}{{a}_{3}}$),
整理得:${{a}_{3}}^{2}$+2$\sqrt{2}$a3-1=0,
解得:a2=$\sqrt{3}-\sqrt{2}$或a2=$-\sqrt{3}-\sqrt{2}$(舍),
猜想:an=$\sqrt{n}$-$\sqrt{n-1}$.
下面用数学归纳法来证明:
①当n=1时,命题显然成立;
②假设当n=k(k≥2)时,有ak=$\sqrt{k}-\sqrt{k-1}$,
则ak+1=Sk+1-Sk
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\frac{1}{2}$(ak+$\frac{1}{{a}_{k}}$)
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\frac{1}{2}$($\sqrt{k}-\sqrt{k-1}$+$\frac{1}{\sqrt{k}-\sqrt{k-1}}$)
=$\frac{1}{2}$(ak+1+$\frac{1}{{a}_{k+1}}$)-$\sqrt{k}$,
整理得:${{a}_{k+1}}^{2}$+2$\sqrt{k}$ak+1-1=0,
解得:ak+1=$\sqrt{k+1}-\sqrt{k}$或ak+1=-$\sqrt{k+1}-\sqrt{k}$(舍),
即当n=k+1时,命题也成立;
由①、②可知数列{an}的通项公式an=$\sqrt{n}$-$\sqrt{n-1}$.

点评 本题考查数列的通项公式,考查数学归纳法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.掷一颗骰子,求出现点数不小于2的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{bn}中,b1b9=64,b3+b7=20,则b11的值为(  )
A.64B.1C.64或1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.数列{an}的前n项和为Sn=-n2+16n,n∈N*
(1)求数列{an}的通项公式:
(2)若bn=|an|,求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y)-1,且当x<0时,f(x)<1
(1)求f(0)
(2)求证:f(x)在R上为增函数
(3)若f(4)=7,解不等式f(2x+1)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}+1({a}_{n}≥\frac{1}{2})}\end{array}\right.$若a1=$\frac{6}{7}$,则a2015的值为-1+$\frac{13}{7}$•22014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和S=2an-a1,且a1,a2+1,a3成等差数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式$\frac{x-1}{x+1}$$<\frac{x+1}{x-1}$的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=2x2-3,g(x)=3x-2,则f[g(x)]=18x2-24x+5.

查看答案和解析>>

同步练习册答案