分析 先由题中已知分别将x1、x2所满足的关系表达为,2x1=2log2(5-2x1),系数配为2是为了与下式中的2x2对应2x2+2log2(x2-1)=5,观察两个式子的特点,发现要将真数部分消掉求出x1+x2,只须将5-2x1化为2(t-1)的形式,则2x1=7-2t,t=x2
解答 解:由题意:${2}^{{x}_{1}}+2{x}_{1}-5=0$①
2log2(x2-1)+2x2-5=0 ②
所以由①得:${2}^{{x}_{1}}=-2{x}_{1}+5$,即x1=log2(5-2x1)即2x1=2log2(5-2x1),
令2x1=7-2t,代入上式得7-2t=2log2(2t-2)=2+2log2(t-1)⇒5-2t=2log2(t-1).
又∵由②式得:5-2x2=2log2(x2-1),易知t=x2
于是2x1=7-2x2
即x1+x2=$\frac{7}{2}$,
故答案为:$\frac{7}{2}$
点评 本题涉及的是两个非整式方程,其中一个是指数方程,一个是对数方程,这两种方程均在高考考纲范围之内,因此此题中不用分别解出两个方程,分别求出x1,x2,再求x1+x2,这样做既培养不了数学解题技巧,也会浪费大量时间.
科目:高中数学 来源: 题型:选择题
| A. | 恒大于0 | B. | 恒小于0 | C. | 等于0 | D. | 无法判断 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com