精英家教网 > 高中数学 > 题目详情
设等差数列{an}的前n项和Sn,若-1<a3<1,0<a4<3,则S9的取值范围是
 
考点:数列与不等式的综合,不等关系与不等式,等差数列的前n项和
专题:等差数列与等比数列,不等式的解法及应用
分析:S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,利用待定系数法求出x=3,y=6,由此能求出S9的取值范围.
解答: 解:∵等差数列{an}的前n项和Sn
∴S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,
x+y=9
2x+5y=36
,解得x=3,y=6,
∵-1<a3<1,0<a4<3,
∴-3<3a3<3,0<6a6<18,
两式相加得-3<S9<21,
∴S9的取值范围是(-3,21).
故答案为:(-3,21).
点评:本题考查等差数列的前9项和的取值范围的求法,是中档题,解题时要认真审题,注意待定系数法和合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若z=ax+by(a>0,b>0)的最大值为12,则
1
2a
+
1
3b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的S=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校有8个社团,甲、乙两位同学各自参加其中一个社团,且他俩参加各个社团的可能性相同,则这两位同学参加同一个社团的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下面算法的程序框图,当输入n=6时,输出的结果是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若U={1,2,3,4,5,6,7,8},A={1,2,3},B={5,6,7},则(∁UA)∩(∁UB)=(  )
A、{4,8}
B、{2,4,6,8}
C、{1,3,5,7}
D、{1,2,3,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,1)、B(1,3),直线ax-by+1=0(a,b∈R+)与线段AB相交,则(a-1)2+b2的最小值为(  )
A、
10
5
B、
2
5
C、
2
5
5
D、
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若
OP
OA
OB
(λ,μ∈R),λμ=
1
8
,则该双曲线的离心率为(  )
A、
3
2
2
B、2
C、
2
3
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足约束条件
x≥1
y≥2x
2x+y-8≤0
,目标函数z=x+ay(a>0)取得最大值的最优解有无数个,则z的最小值为(  )
A、2B、3C、5D、13

查看答案和解析>>

同步练习册答案