精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=sin2xcosφ+cos2xsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期和值域;
(2)设若点($\frac{π}{6}$,$\frac{1}{2}$)在函数y=f(x+$\frac{π}{6}$)的图象上,求φ的值.

分析 (1)根据两角和与差的正弦函数对已知函数关系式进行化简得到f(x)=sin(2x+φ),所以结合正弦函数的性质来求最小正周期和值域;
(2)把( $\frac{π}{6}$,$\frac{1}{2}$)代入函数y=f(x+$\frac{π}{6}$),根据0<φ<π求φ的值.

解答 (1)解:∵f(x)=sin2xcosφ+cos2xsinφ=sin(2x+φ),即f(x)=sin(2x+φ),
∴函数f(x)的最小正周期为π,值域为[-1,1];
(2)解:∵函数y=f(x+$\frac{π}{6}$)=sin(2x+$\frac{π}{3}$+φ),
又点($\frac{π}{6}$,$\frac{1}{2}$)在函数y=f(x+$\frac{π}{6}$)的图象上,
∴sin($\frac{2π}{3}$+φ)=$\frac{1}{2}$.
∵0<φ<π,$\frac{2π}{3}$<$\frac{2π}{3}$+φ<$\frac{5π}{3}$,
∴$\frac{2π}{3}$+φ=$\frac{5π}{6}$,
解得:φ=$\frac{π}{6}$.

点评 本小题主要考查三角函数性质和三角函数的基本关系等知识,考查化归与转化的数学思想方法,以及运算求解能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)已知二次函数y=f(x)的图象过点(1,-1)(3,3)(-2,8),求f(x)的解析式;
(2)求函数f(x)=$\frac{2-x}{1+x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直角△ABC如图所示,其中∠ABC=90°,D,E分别是AB,AC边上的中点.现沿折痕DEDE将△ADE翻折,使得A与平面ABC外一点P重合,得到如图(2)所示的几何体
(1)证明:平面PBD⊥平面BCED;
(2)记平面PDE与平面PBC的交线为l,探究:直线l与BC是否平行.若平行,请给出证明,若不平行,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若一系列的函数解析式相同、值域相同,但定义域不同,则称这些函数为“同型异构”函数.那么函数解析式为y=-x2,x∈R,值域为{-1,-9}的“同型异构”函数有(  )
A.10个B.9个C.8个D.7个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x≥60),每个月的销售利润为y元.
(1)求y与x的函数关系式;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.“a>1”是“函数f(x)=(a2x在定义域内是增函数”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={x|(x+1)(2-x)>0},集合B={x|1<x<3},则A∪B=(  )
A.(-1,3)B.(-1,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某高校《统计初步》课程的教师随机调查了选修该课的学生的一些情况,具体数据如表1:为了判断主修统计专业是否与性别有关,根据表中数据,得K2的观察值为k=$\frac{{50×{{(13×20-10×7)}^2}}}{23×27×20×30}$≈4.844,所以判断主修统计专业与性别有关,那么这种判断出错的可能性不超过(  )
表1非统计专业统计专业
1310
720
P(K2≥k00.050.0250.010.005
k03.8415.0246.6357.879
A.5%B.2.5%C.1%D.0.5%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围为[0,10],分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如右图.
(Ⅰ)这50个路段为中度拥堵的有多少个?
(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.

查看答案和解析>>

同步练习册答案