分析 (1)由DE⊥BD,DE⊥PD可得DE⊥平面PBD,故平面BCED⊥平面PBD;
(2)证明BC∥平面PDE,根据线面平行的性质定理即可得出BC∥l.
解答 证明:(1)∵∠ABC=90°,D,E是AB,AC的中点,
∴DE⊥AB,即DE⊥BD,DE⊥PD,
又PD?平面PBD,BD?平面PBD,BD∩PD=D,
∴DE⊥平面PBD,又DE?平面BCED,
∴平面PBD⊥平面BCED.
(2)l∥BC,证明如下:
∵BC∥DE,DE?平面PDE,BC?平面PDE,
∴BC∥平面PDE,
又BC?平面PBC,平面PBC∩平面PDE=l,
∴BC∥l.
点评 本题考查了面面垂直的判定,线面平行的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 5 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com