精英家教网 > 高中数学 > 题目详情
4.如图,已知等腰直角三角形RBC,其中∠RBC=90°,RB=BC=2,点A,D分别是RB,RC的中点,现将△RAD沿着边AD折起到△PAD位置,使PA⊥AB,连结PB,PC
(Ⅰ)求证:BC⊥PB
(Ⅱ)求PC与平面ABCD所成角的余弦值.

分析 (Ⅰ)由已知条件AD∥BC,PA⊥AD,从而得到BC⊥PA,再由BC⊥AB,即可得到BC⊥平面PAB,从而得出BC⊥PB;
(Ⅱ)由PA⊥AD,PA⊥AB即可得到PA⊥平面ABCD,从而连接AC,∠PCA便是PC与平面ABCD所成角,从而求出AC,PC的长,在直角三角形PAC中即可求出cos∠PCA.

解答 解:(Ⅰ)证明:∵A、D分别是RB、RC的中点;
∴AD∥BC,∠PAD=∠RAD=∠RBC=90°;
∴PA⊥AD,PA⊥BC;
又BC⊥AB,PA∩AB=A;
∴BC⊥平面PAB;
∵PB?平面PAB;
∴BC⊥PB;
(Ⅱ)由PA⊥AD,PA⊥AB,AD∩AB=A;
∴PA⊥平面ABCD;
连接AC,则∠PCA是直线PC与平面ABCD所成的角;
∵AB=1,BC=2,∴AC=$\sqrt{5}$;
又PA=1,PA⊥AC,∴PC=$\sqrt{6}$;
∴在Rt△PAC中,cos$∠PCA=\frac{AC}{PC}=\frac{\sqrt{5}}{\sqrt{6}}=\frac{\sqrt{30}}{6}$;
∴PC与平面ABCD所成角的余弦值为$\frac{\sqrt{30}}{6}$.

点评 考查三角形中位线的性质,弄清折叠前后不变的量,线面垂直的判定定理及其性质,线面角的概念及求法,直角三角形边的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.给出下列命题:①若$\overrightarrow a$•$\overrightarrow b$<0,则$\overrightarrow a$、$\overrightarrow b$的夹角为钝角;②若$\overrightarrow a$=(x1,y1),$\overrightarrow b$=(x2,y2),则$\overrightarrow a$∥$\overrightarrow b$?$\frac{x_1}{x_2}$=$\frac{y_1}{y_2}$;③若{${\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$}为空间的一组基底,则对于实数x、y、z满足x$\overrightarrow a$+y$\overrightarrow b$+z$\overrightarrow c$=$\overrightarrow 0$时,x2+y2+z2=0;④|$\overrightarrow p$+$\overrightarrow q$|•|$\overrightarrow p$-$\overrightarrow q$|=|${\overrightarrow p^2}$-${\overrightarrow q^2}$|;⑤$\overrightarrow p$在基底{$\overrightarrow i$,$\overrightarrow j$,$\overrightarrow k$}下的坐标为(1,2,3),则在基底{$\overrightarrow i$+$\overrightarrow j$,$\overrightarrow j$+$\overrightarrow k$,$\overrightarrow k$+$\overrightarrow i$}下的坐标为(0,2,1).
其中正确的是③⑤(把你认为正确的命题序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知实数x,y满足logax+2logxa+logxy=4,其中常数a>1,当y取最大值2时,对应的x的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a>0,函数f(x)=$\frac{a}{x}$+|lnx-a|.
(1)若对于任意x∈[1,e2],f(x)≤$\frac{3}{2}$恒成立,求实数a的取值范围;
(2)若a=1,求方程f[f(x)]=x解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2x3-3ax2+1,且x=1为函数f(x)的一个极值点.
(1)求a的值;
(2)证明:f(x)≤2x2-3x2-x+ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an},Sn为数列{an}的前n项和,a3=7,S4=24.求等差数列通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某大学四年级某班共50人.其中男生30人.女生20人.毕业前每人必须写一篇毕业论文,共50篇论文,若从50篇论文中,按照男女同学比例的方法共选出5篇进行展出.
(1)求选出的论文中女生写的论文的篇数;
(2)从选出的5篇论文中,求取得的这一篇是女生论文的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了得到函数y=$\frac{1}{2}$cos2x的图象,可以把函数y=$\frac{1}{2}$sin(2x+$\frac{π}{3}$)的图象上所有的点(  )
A.向右平移$\frac{π}{12}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{12}$个单位D.向左平移$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ex的图象与函数g(x)=|ln(-x)|的图象有两个交点A(x1,y1),B(x2,y2),则(  )
A.$\frac{1}{10}$<x1x2<$\frac{1}{e}$B.$\frac{1}{e}$<x1x2<1C.1<x1x2<eD.x1x2>e

查看答案和解析>>

同步练习册答案