精英家教网 > 高中数学 > 题目详情
14.用数学归纳法证明命题:1+2+3+…+n2=$\frac{{n}^{2}+{n}^{4}}{2}$时,则从n=k到n=k+1左边需增加的项数为(  )
A.2n-1B.2nC.2n+1D.n2-n+1

分析 根据等式1+2+3+…+n2=$\frac{{n}^{2}+{n}^{4}}{2}$时,考虑n=k和n=k+1时,等式左边的项,再把n=k+1时等式的左端减去n=k时等式的左端,即可得到答案.

解答 解:当n=k时,等式左端=1+2++k2
当n=k+1时,等式左端=1+2++k2+(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
所以增加的项数为:(k+1)2-(k2+1)+1=2k+1
即增加了2k+1项.
故选:C

点评 此题主要考查数学归纳法的问题,解答的关键是明白等式左边项的特点,再把n=k+1时等式的左端减去n=k时等式的左端.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列判断中正确的是(  )
A.$f(x)={(\sqrt{x})^2}$是偶函数B.$f(x)=\frac{{{x^2}-x}}{x-1}$是奇函数
C.$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$是偶函数D.$f(x)=\frac{{\sqrt{4-{x^2}}}}{|x-3|-3}$是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.根据下列程序,当a的输入值为2,b的输入值为-2时,输出值为a、b,则ab=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P(-2,3),点Q(-6,-1),则直线PQ的倾斜角为(  )
A.30°B.45°C.60°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若集合P={x|2≤x<4},Q={x||x|>3},则P∩Q等于(  )
A.{x|3<x<4}B.{x|-3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=1,|{\overrightarrow a-4\overrightarrow b}|=2\sqrt{7}$,则向量$\overrightarrow a,\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.抛物线y=-$\frac{1}{4}$x2的焦点与准线的距离为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中错误的个数为(  )
①若p∨q为真命题,则p∧q为真命题;
②“x>5”是“x2-4x-5>0”的充分不必要条件;
③命题p:?x0∈R,x02+x0-1<0,则非p:?x∈R,x2+x-1≥0;
④命题“若x2-3x+2=0,则x=1或x=2”的逆命题为“若x≠1或x≠2,则x2-3x+2≠0”.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,抛物线y=ax2+2x+c经过点A(0,3),B(-1,0),抛物线的顶点为点D,对称轴与x轴交于点E,连结BD,则抛物线表达式:y=-x2+2x+3BD的长为2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案