精英家教网 > 高中数学 > 题目详情

(本小题满分12分)在三棱柱中,侧面为矩形,的中点,交于点侧面.

(1)证明:
(2)若,求直线与平面所成角的正弦值.

(1)证明过程详见解析;(2).

解析试题分析:本题以三棱柱为几何背景考查线线垂直的判定和线面垂直的判定以及线面角的求法,可以运用空间向量法求解,突出考查考生的空间想象能力和推理论证能力以及计算能力.第一问,由于侧面为矩形,所以在直角三角形和直角三角形中可求出的正切值相等,从而判断2个角相等,通过转化角得到, 又由于线面垂直,可得,所以可证, 从而得证;第二问,根据已知条件建立空间直角坐标系,写出各个点的坐标,根据,求出平面的法向量,再利用夹角公式求出直线和平面所成角的正弦值.
试题解析:(1)证明:由题意,
注意到,所以,
所以,
所以,      3分
侧面
交于点,所以,
又因为,所以        6分
(2)如图,分别以所在的直线为轴,以为原点,建立空间直角坐标系


又因为,所以        8分
所以
设平面的法向量为
则根据可得是平面的一个法向量,
设直线与平面所成角为,则   12分
考点:1.直角三角形中正切的计算;2.线面垂直的判定和性质;3.空间向量法;4.线面角的正弦值的求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,垂直圆所在的平面,是圆上的点.

(1)求证:平面
(2)设的中点,的重心,求证://平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,长方体中,,点的中点.

(1)求证:直线平面
(2)求证:平面平面
(3)求与平面所成的角大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,底面为梯形,, 平面,的中点

(Ⅰ)证明:
(Ⅱ)若,求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求证:AC⊥BC1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为矩形,且,,,

(Ⅰ)平面PAD与平面PAB是否垂直?并说明理由;
(Ⅱ)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,

(Ⅰ)求证:
(Ⅱ)设

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱锥中,的中点,的中点,且为正三角形.

(1)求证:平面
(2)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知矩形,点的中点,将△沿折起到△的位置,使二面角是直二面角.


(1)证明:⊥面
(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案