精英家教网 > 高中数学 > 题目详情
12.定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{0.5}(x+1),0≤x<1}\\{1-|x-3|,x≥1}\end{array}\right.$则关于x的函数F(x)=f(x)-a(0<a<1)的所有零点之和为1-2a

分析 由题意,作函数y=f(x)与y=a的图象,从而可得x1+x2=-6,x4+x5=6,x3=1-2a,从而解得.

解答 解:由题意,作函数y=f(x)与y=a的图象如下,

结合图象,
设函数F(x)=f(x)-a(0<a<1)的零点分别为
x1,x2,x3,x4,x5
则x1+x2=-6,x4+x5=6,
-log0.5(-x3+1)=a,
x3=1-2a
故x1+x2+x3+x4+x5=-6+6+1-2a=1-2a
故答案为:1-2a

点评 本题考查了数形结合的思想应用及函数的性质应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知曲线f(x)=$\frac{{{{log}_2}(x+1)}}{x+1}$(x>0)上有一点列Pn(xn,yn)(n∈N*),点Pn在x轴上的射影是Qn(xn,0),且xn=2xn-1+1(n∈N*),x1=1.
(1)求数列{xn}的通项公式;
(2)设梯形PnQnQn+1Pn+1的面积是Sn,求证:$\frac{1}{S_1}$+$\frac{1}{{2{S_2}}}$+…+$\frac{1}{{n{S_n}}}$<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等差数列{an}的前n项的和为Sn,若a1=24,S17=S10.则Sn取最大值时n的值为13或14.

查看答案和解析>>

科目:高中数学 来源:2017届安徽淮北十二中高三上月考二数学(理)试卷(解析版) 题型:解答题

已知集合,集合

(1)求集合

(2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在[-1,3]上的解集为
(  )
A.(1,3)B.(-1,1)C.(-1,0)∪(1,3)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.抛掷两颗质地均匀的骰子各1次,在向上的点数之和为7的条件下,其中有1个的点数为4的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)
篮球排球总计
男同学16622
女同学81220
总计241842
(1)估计该班同学中,参加排球兴趣小组的同学的比例;
(2)请根据数据画出列联表的等高条形图,并通过条形图判断参加“篮球小组”或“排球小组”与性别是否有关?
(3)请根据题中数据,判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关?
下面临界值表供参考:
P(k2≥k00.150.100.050.0250.0100.0050.001
k22.0722.7063.8415.0246.6357.87910.828
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知X和Y是两个分类变量,由公式K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$算出K2的观测值k约为7.822根据下面的临界值表可推断(  )
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
A.推断“分类变量X和Y没有关系”犯错误的概率上界为0.010
B.推断“分类变量X和Y有关系”犯错误的概率上界为0.010
C.有至少99%的把握认为分类变量X和Y没有关系
D.有至多99%的把握认为分类变量X和Y有关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的三边长分别为a,b,c,若(b+c+a)(b+c-a)=3bc,则角A的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案