精英家教网 > 高中数学 > 题目详情
一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.
(1)求搅匀后从中任意摸出1个球,恰好是红球的概率;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,求至少有一次摸出的球是红球的概率.
考点:古典概型及其概率计算公式
专题:概率与统计
分析:(1)列举出所有的可能结果,找到恰是红球的结果,根据概率公式计算即可,
(2)列举出所有可能出现的结果,找到至少有一次是红球的结果,根据概率公式计算即可.
解答: 解:(1)搅匀后从中任意摸出1个球,所有可能出现的结果有:红、黄、蓝、白,共有4种,它们出现的可能性相同.所有的结果中,满足“恰好是红球”(记为事件A)的结果只有1种,所以P(A)=
1
4

(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,所有可能出现的结果有:(红,红)、(红,黄)、(红,蓝)、(红,白)、(黄,红)、(黄,黄)、(黄,蓝)、(黄,白)、(蓝,红)、(蓝,黄)、(蓝,蓝)、(蓝,白)、(白,红)、(白,黄)、(白,蓝)、(白,白),共有16种,它们出现的可能性相同.所有的结果中,满足“至少有一次是红球”(记为事件B)的结果只有7种,所以P(B)=
7
16
点评:本题主要考查了古典概型的概率的计算,关键是一一列举出所有的基本事件,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

判断并证明函数f(x)=
2x-1
x-1
在(1,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正△ABC中,点D、E分别在边BC,AC上,且BD=
1
3
BC,CE=
1
3
CA,AD,BE相交于点P.求证:
(Ⅰ)四点P、D、C、E共圆;
(Ⅱ)AP⊥CP.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=3,AC=BC=2,D为AB中点,E为BB1上一点,且
BE
EB1
=λ.
(Ⅰ)当λ=
2
7
时,求证:CE⊥平面A1C1D;
(Ⅱ)若直线CE与平面A1DE所成的角为30°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+(y-2)2=1,过P(1,0),作圆C的切线,切点A,B.
(1)求直线PA、PB的直线方程;
(2)求弦长|AB|;
(3)若Q点是x轴上的动点,过Q点作圆C的切线.切点为G、H,求四边形GCHQ的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,以x轴负半轴为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于点P、Q,已知点P的坐标为(-
3
5
4
5
).
(1)求
sin2α+cos2α+1
1+tanα
的值;
(2)若
OP
OQ
=0,求sin(α+
β
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=2an-4n+7,其中n=1,2,3,….
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)根据计算结果猜想{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知α是第三角限的角,化简
1+sinα
1-sinα
-
1-sinα
1+sinα

(2)已知α∈(
π
2
,π)且sin(π-α)+cos(2π+α)=
2
3
,求sin3
2
-α)+cos3
π
2
-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛掷一个骰子,若掷出5点或6点就说试验成功,则在3次试验中恰有2次成功的概率为
 

查看答案和解析>>

同步练习册答案