精英家教网 > 高中数学 > 题目详情
如图,在正△ABC中,点D、E分别在边BC,AC上,且BD=
1
3
BC,CE=
1
3
CA,AD,BE相交于点P.求证:
(Ⅰ)四点P、D、C、E共圆;
(Ⅱ)AP⊥CP.
考点:圆內接多边形的性质与判定
专题:直线与圆
分析:(I)由已知条件推导出△ABD≌△BCE,由此能证明四点P,D,C,E共圆.
(II)连结DE,由正弦定理知∠CED=90°,由四点P,D,C,E共圆知,∠DPC=∠DEC,由此能证明AP⊥CP.
解答: 证明:(I)在△ABC中,由BD=
1
3
BC
,CE=
1
3
CA
,知:
△ABD≌△BCE,…(2分)
∴∠ADB=∠BEC,即∠ADC+∠BEC=π.
所以四点P,D,C,E共圆.…(5分)
(II)如图,连结DE.
在△CDE中,CD=2CE,∠ACD=60°,
由正弦定理知∠CED=90°.…(8分)
由四点P,D,C,E共圆知,∠DPC=∠DEC,
所以AP⊥CP.…(10分)
点评:本题考查四点共圆的证明,考查异面直线垂直的证明,解题时要认真审题,注意正弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

画出函数y=x2-2|x|-1的图象,并说明该图象与y=x2-2x-1的图象的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在棱长为1的正方形ABCD-A1B1C1D1中,M、N、P分别为A1B1、BB1、CC1的中点.
(1)证明D1M、C1B1、CN三线共点;
(2)求异面直线D1P与AM所成角度数并求CN与AM所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
,x∈R.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在闭区间[-
π
4
π
4
]上的最大值和最小值.
(Ⅲ)求f(x)在闭区间[-
π
4
π
4
]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,直线l:y=-x+2
2
与以原点为圆心、以椭圆C1的短半轴长为半径的圆相切.求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:
1-2a
x-2
<a(a>0).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=SD=1.
(1)证明:AB∥平面SDC
(2)证明:SD⊥平面SAB
(3)求A点到平面SBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同.
(1)求搅匀后从中任意摸出1个球,恰好是红球的概率;
(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,求至少有一次摸出的球是红球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲、乙两个盒内各任取2个球.
(Ⅰ)求取出的4个球中没有红球的概率;
(Ⅱ)求取出的4个球中恰有1个红球的概率;
(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案