精英家教网 > 高中数学 > 题目详情
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用 ξ表示取球终止所需要的取球次数.

(1)求袋中所有的白球的个数;

(2)求随机变量ξ的概率分布;

(3)求甲取到白球的概率.

思路分析:(1)求袋中原有白球的个数,需设出白球的个数,利用古典概型公式,列出方程组求解;(2)写出ξ的可能取值,求出相应概率,写出ξ的分布列;(3)利用所求的分布列,甲取到白球的概率为P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5).

解:(1)设袋中原有n个白球,由题意知.

可得 n=3或n=-2(舍去),即袋中原有3个白球.

(2)由题意, ξ的可能取值为1,2,3,4,5.

P(ξ=1)=;P(ξ=2)=;P(ξ=3)=;

P(ξ=4)=;

P(ξ=5)=

所以ξ的分布列为

ξ

1

2

3

4

5

P

     (3)因为甲先取,所以甲只有可能在第一次,第三次和第五次取球,

记“甲取到白球”为事件A,则P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5)=.

    深化升华 本题考查知识面广,包括等可能事件,互斥事件,随机变量的概率分布等知识,可以运用方程组的思想求出白球的个数.

 

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
17
.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,
(I)求袋中原有白球的个数和;
(II)求取球两次停止的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取1个球是白球的概率为
37
.现有甲、乙两人从袋中轮流摸取1球,取后不放回:甲先取,乙后取,然后甲再取…,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.
(1)求取球2次终止的概率;
(2)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
17
.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.
(1)求袋中原有白球的个数;
(2)求取球两次终止的概率
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
17
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•盐城一模)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
27
.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用ξ表示取球终止时所需要的取球次数.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求随机变量ξ的概率分布及数学期望Eξ;
(Ⅲ)求甲取到白球的概率.

查看答案和解析>>

同步练习册答案