精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{2^x},\;x≤0\\|{log_2}x|,\;x>0\end{array}$则f(f(-1))=1.

分析 直接利用分段函数求解函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{2^x},\;x≤0\\|{log_2}x|,\;x>0\end{array}$则f(-1)=$\frac{1}{2}$,
f(f(-1))=f($\frac{1}{2}$)=$\left|{log}_{2}\frac{1}{2}\right|$=1.
故答案为:1.

点评 本题考查分段函数的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.将函数y=sin(2x-$\frac{π}{3}$)的图象向左移动$\frac{π}{3}$个单位,得到函数y=f(x)的图象,则函数y=f(x)的一个单调递增区间是(  )
A.[-$\frac{π}{4}$,$\frac{π}{4}$]B.[-$\frac{π}{2}$,0]C.[-$\frac{5π}{12}$,$\frac{π}{12}$]D.[$\frac{π}{12}$,$\frac{7π}{12}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.学校开展阳光体育活动,对学生的锻练时间进行随机抽样调查,从中随机抽取男、女生各25名进行了问卷调查,得到了如下列联表:
锻练时间男生女生合计
少于1小时51520
不少于1小时201030
合  计252550
(Ⅰ) 根据上表数据求x,y,并据此资料分析:有多大的把握可以认为“锻练时间与性别有关”?
(Ⅱ) 从这50名学生中用分层抽样的方法抽取5人为样本,求从该样本中任取2人,
至少有1人锻练时间少于1小时的概率.
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥K00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某班有50名同学,一次数学考试的成绩X服从正态分布N(110,102),已知P(100≤X≤110)=0.34,估计该班学生数学成绩在120分以上的有8人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=1-$\frac{a}{x}+ln\frac{1}{x}$(a为实数).
(Ⅰ)当a=1时,求函数f(x)的图象在点$(\frac{1}{2},f(\frac{1}{2}))$处的切线方程;
(Ⅱ)设函数h(a)=3λa-2a2(其中λ为常数),若函数f(x)在区间(0,2)上不存在极值,且存在a满足h(a)≥λ+$\frac{1}{8}$,求λ的取值范围;
(Ⅲ)已知n∈N*,求证:ln(n+1)<1+$\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+…+\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设{an}是等差数列,{bn}是各项都为正整数的等比数列,且a1=b1=1,a13b2=50,a8+b2=a3+a4+5,n∈N*
(Ⅰ)求{an},{bn}的通项公式;
(Ⅱ)若数列{dn}满足${d_n}{d_{n+1}}={(\frac{1}{2})^{-8+{{log}_2}{b_{n+1}}}}$(n∈N*),且d1=16,试求{dn}的通项公式及其前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.记不等式x2+x-6<0的解集为集合A,函数y=lg(x-a)的定义域为集合B.若“x∈A”是“x∈B”的充分条件,则实数a的取值范围为(-∞,-3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设全集U=R,函数f(x)=lg(|x+1|-1)的定义域为A,集合B={x|cosπx=1},则(∁UA)∩B的元素个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线C:y2=4x的准线l的方程是x=-1;以C的焦点为圆心,且与直线l相切的圆的方程是(x-1)2+y2=4.

查看答案和解析>>

同步练习册答案