| A. | -$\frac{\sqrt{2}}{2}$ | B. | -$\sqrt{2}$ | C. | -$\frac{\sqrt{6}}{6}$ | D. | -$\frac{\sqrt{6}}{3}$ |
分析 利用基本不等式得出|PF1|•|PF2|的最大值,从而得出离心率的范围,再根据函数单调性得出答案.
解答 解:由椭圆的定义可知|PF1|+|PF2|=2a,
∴|PF1|•|PF2|≤($\frac{|P{F}_{1}|+|P{F}_{2}|}{2}$)2=a2,
∴2b2≤a2≤3b2,
即2a2-2c2≤a2≤3a2-3c2,
∴$\frac{1}{2}$≤$\frac{{c}^{2}}{{a}^{2}}$≤$\frac{2}{3}$,即$\frac{\sqrt{2}}{2}$≤e≤$\frac{\sqrt{6}}{3}$.
令f(e)=e-$\frac{1}{e}$,则f(e)是增函数,
∴当e=$\frac{\sqrt{2}}{2}$时,e-$\frac{1}{e}$取得最小值$\frac{\sqrt{2}}{2}$-$\sqrt{2}$=-$\frac{\sqrt{2}}{2}$.
故选A.
点评 本题考查了椭圆的性质,基本不等式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{1}{2},+∞)$ | B. | [2,+∞) | C. | $(0,\frac{1}{2}]$ | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\frac{{\sqrt{2}}}{2}}]$ | B. | $[{\frac{{\sqrt{2}}}{2},+∞})$ | C. | $({-∞,-\frac{{\sqrt{2}}}{2}}]$,$({0,\frac{{\sqrt{2}}}{2}}]$ | D. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-4,4) | B. | (-4,4] | C. | (-∞,4) | D. | (-∞,4)∪[2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$-sin2n | B. | sin2n-$\frac{2}{3}$ | C. | $\frac{1}{3}$-cos2n | D. | cos2n+$\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com