精英家教网 > 高中数学 > 题目详情
9.函数f(x)=x2-lnx的单调递减区间是(  )
A.$({0,\frac{{\sqrt{2}}}{2}}]$B.$[{\frac{{\sqrt{2}}}{2},+∞})$C.$({-∞,-\frac{{\sqrt{2}}}{2}}]$,$({0,\frac{{\sqrt{2}}}{2}}]$D.$[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$

分析 求出原函数的导函数,由导函数小于0求出自变量x在定义域内的取值范围,则原函数的单调减区间可求.

解答 解:由f(x)=x2-lnx,得:f′(x)=(x2-lnx)′=2x-$\frac{1}{x}$=$\frac{{2x}^{2}-1}{x}$,
因为函数f(x)=x2-lnx的定义域为(0,+∞),
由f′(x)≤0,得:$\frac{{2x}^{2}-1}{x}$≤0,
解得:0<x<$\frac{\sqrt{2}}{2}$.
所以函数f(x)=x2-lnx的单调递减区间是(0,$\frac{\sqrt{2}}{2}$],
故选:A.

点评 本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.过点P(1,1)(且倾斜角为45°的直线被圆(x-2)2+(y-1)2=2所截的弦长是(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC的三个顶点是A(4,0),B(6,7),C(0,3).
(1)求过点A与BC平行的直线方程.
(2)求过点B,并且在两个坐标轴上截距相等的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.已知购买一张彩票中奖的概率为$\frac{1}{1000}$,则购买1000张这种彩票一定能中奖
B.互斥事件一定是对立事件
C.如图,直线l是变量x和y的线性回归方程,则变量x和y相关系数在-1到0之间
D.若样本x1,x2,…xn的方差是4,则x1-1,x2-1,…xn-1的方差是3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正方形ABCD的边长为3,E为CD的中点,则$\overrightarrow{AE}•\overrightarrow{BD}$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据如表:根据表中数据得到${K^2}=\frac{{775×{{(20×450-5×300)}^2}}}{25×750×320×455}$≈15.968,因为K2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为(  )
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.0.1B.0.05C.0.01D.0.001

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等比数列{an}的前n项和为Sn,a1=1,若3S1,2S2,S3成等差数列,则an=(  )
A.2n-1B.1或3n-1C.3nD.3n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,P为椭圆M上任一点,且|PF1|•|PF2|的最大值的取值范围是[2b2,3b2],椭圆M的离心率为e,则e-$\frac{1}{e}$的最小值是(  )
A.-$\frac{\sqrt{2}}{2}$B.-$\sqrt{2}$C.-$\frac{\sqrt{6}}{6}$D.-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的框图,若输出的sum的值为2047,则条件框中应填写的是(  )
A.i<9?B.i<10?C.i<11?D.i<12?
2i

查看答案和解析>>

同步练习册答案