精英家教网 > 高中数学 > 题目详情
9.已知x>0,y>0,求证:$x+y≤\frac{y^2}{x}+\frac{x^2}{y}$.

分析 使用分析法证明,寻找使结论成立的充分条件即可.

解答 证明:∵x>0,y>0,
故欲证:$x+y≤\frac{y^2}{x}+\frac{x^2}{y}$,只需证:(x+y)xy≤x3+y3
即证:(x+y)xy≤(x+y)(x2-xy+y2),
只需证:xy≤x2-xy+y2
即证:2xy≤x2+y2
显然上式恒成立,
故$x+y≤\frac{y^2}{x}+\frac{x^2}{y}$.

点评 本题考查了不等式的证明,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知tanα=2,则$\frac{1}{sin2α}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设α,β为锐角,且满足sin2α+sin2β=sin(α+β),则α+β=$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=lnx的图象与直线$y=\frac{1}{2}x+a$相切,则a=(  )
A.2ln2B.ln2+1C.ln2D.ln2-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.对于实数a,b,c,有以下命题:
①若a>b,则ac<bc;
②若ac2>bc2,则a>b;
③若a<b<0,则a2>ab>b2
④若$a>b,\frac{1}{a}>\frac{1}{b}$,则a>0,b<0.
其中真命题的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设甲、乙两楼相距10m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是(  )
A.$\frac{10\sqrt{3}}{3}$m,$\frac{40}{3}$$\sqrt{3}$ mB.10$\sqrt{3}$ m,20$\sqrt{3}$ mC.10($\sqrt{3}$-$\sqrt{2}$) m,20$\sqrt{3}$ mD.10$\sqrt{3}$ m,$\frac{40}{3}$$\sqrt{3}$ m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知m∈R,复数z=$\frac{{m({m+2})}}{m-1}+({{m^2}+2m-3})i$,当m为何值时,
(1)z∈R?
(2)z是虚数?
(3)z是纯虚数?
(4)z对应的点位于复平面第二象限?
(5)z对应的点在直线x+y+3=0上?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x(x-m)2在x=2处有极大值.
(1)求实数m的值;
(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)设(1-x)10=a0+a1x+a2x2+…+a10x10,求下列各式的值.
(Ⅰ)a0
(Ⅱ)(a0+a2+…+a102-(a1+a3+…+a92
(Ⅲ)|a0|+|a1|+|a2|+…+|a10|
(2)求(1+2x-x25展开式中x4的系数.

查看答案和解析>>

同步练习册答案