分析 (1)令f′(2)=0解出m,再进行验证x=2是否为极大值点即可;
(2)求出f(x)的单调性和极值,即可得出a的范围.
解答 解:(1)f'(x)=3x2-4mx+m2,由已知f'(2)=12-8m+m2=0,
∴m=2,或m=6,当m=2时,f'(x)=3x2-8x+4=(3x-2)(x-2),
∴f(x)在$x∈({\frac{2}{3},2})$上单调递减,在x∈(2,+∞)上单调递增,
∴f(x)在x=2处有极小值,不符合题意,舍去.
∴m=6.
(2)由(1)知f(x)=x3-12x2+36x,f′(x)=3x2-24x+36,
且f(x)的另一个极值点为6,
∴f(x)在x∈(-∞,2)上单调递增,在x∈(2,6)上单调递减,在x∈(6,+∞)上单调递增,
当x=2时,f(x)取得极大值f(2)=32,
当x=6时,f(x)取得极小值f(6)=0,
∵方程f(x)=a有三个不同的实根,
∴0<a<32.
点评 本题考查了导数与函数单调性、极值的关系,属于中档题.
科目:高中数学 来源: 题型:解答题
| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(元) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com