精英家教网 > 高中数学 > 题目详情
6.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1-2sinθcosθ}{{{{cos}^2}θ-{{sin}^2}θ}}$的值.

分析 (1)由题意利用同角三角函数的基本关系求得sinθ和cosθ的值,可得tanθ的值.
(2)利用同角三角函数的基本关系,化简要求的式子,再把tanθ的值代入,可得结果.

解答 解:(1)∵sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π)①,
平方可得1+2sinθcosθ=$\frac{1}{25}$,∴sinθcosθ=-$\frac{12}{25}$ ②,
由①②求得sinθ=$\frac{4}{5}$,cosθ=-$\frac{3}{5}$,∴tanθ=$\frac{sinθ}{cosθ}$=-$\frac{4}{3}$.
(2)$\frac{1-2sinθcosθ}{{{{cos}^2}θ-{{sin}^2}θ}}$=$\frac{{(cosθ-sinθ)}^{2}}{(cosθ+sinθ)•(cosθ-sinθ)}$=$\frac{cosθ-sinθ}{cosθ+sinθ}$=$\frac{1-tanθ}{1+tanθ}$=-7.

点评 本题主要考查同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图,已知在三棱锥P-ABC中,PC⊥平面ABC,AB⊥BC,若PC=BC=8,AB=4,E,F分别是PA,PB的中点,设三棱锥P-CEF的外接球的球心为O,则△AOB的面积为8$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=lnx的图象与直线$y=\frac{1}{2}x+a$相切,则a=(  )
A.2ln2B.ln2+1C.ln2D.ln2-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设甲、乙两楼相距10m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是(  )
A.$\frac{10\sqrt{3}}{3}$m,$\frac{40}{3}$$\sqrt{3}$ mB.10$\sqrt{3}$ m,20$\sqrt{3}$ mC.10($\sqrt{3}$-$\sqrt{2}$) m,20$\sqrt{3}$ mD.10$\sqrt{3}$ m,$\frac{40}{3}$$\sqrt{3}$ m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知m∈R,复数z=$\frac{{m({m+2})}}{m-1}+({{m^2}+2m-3})i$,当m为何值时,
(1)z∈R?
(2)z是虚数?
(3)z是纯虚数?
(4)z对应的点位于复平面第二象限?
(5)z对应的点在直线x+y+3=0上?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若双曲线$\frac{{x}^{2}}{m+9}$+$\frac{{y}^{2}}{9}$=1的离心率为2,则m的值是-36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x(x-m)2在x=2处有极大值.
(1)求实数m的值;
(2)若关于x的方程f(x)=a有三个不同的实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距6海里,渔船乙以5 海里/小时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.
(1)求渔船甲的速度;
(2)求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1.
(1)求直线EC1与FD1所成角的余弦值;
(2)求二面角C-DE-C1的平面角的余弦值.

查看答案和解析>>

同步练习册答案