精英家教网 > 高中数学 > 题目详情
16.如图,已知在三棱锥P-ABC中,PC⊥平面ABC,AB⊥BC,若PC=BC=8,AB=4,E,F分别是PA,PB的中点,设三棱锥P-CEF的外接球的球心为O,则△AOB的面积为8$\sqrt{5}$.

分析 过O作OH⊥平面PCF,则垂足H为PC中点,证明AB⊥平面PBC得出OH∥AB,故而O到AB的距离为BH的长,代入面积公式即可求出答案.

解答 解:∵PC=CB,F是PB的中点,
∴CF⊥PF,即△PCF是直角三角形.
过O作OH⊥平面PCF,垂足为H,则H是PC的中点,
∵PC⊥平面ABC,AB?平面ABC,
∴PC⊥AB,又AB⊥BC,PC∩BC=C,
∴AB⊥平面PBC,又OH⊥平面PBC,
∴OH∥AB,
连结BH,则BH为O到AB的距离,
由勾股定理得BH=$\sqrt{B{C}^{2}+C{H}^{2}}$=4$\sqrt{5}$,
∴S△OAB=$\frac{1}{2}×AB×BH$=$\frac{1}{2}×4×4\sqrt{5}$=8$\sqrt{5}$.
故答案为:8$\sqrt{5}$.

点评 本题考查了空间距离的计算,棱锥与球的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.用数列归纳法证明$\frac{1}{2}+cosα+cos2α+…+cosnα=\frac{{sin(n+\frac{1}{2})α}}{{2sin\frac{α}{2}}}$时,验证n=1时,左边式子为(  )
A.$\frac{1}{2}$B.cosαC.$\frac{1}{2}+cosα$D.$\frac{{sin\frac{3}{2}α}}{{2sin\frac{α}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示的三棱柱ABC-A1B1C1中,底面是正三角形,侧棱BB1⊥面ABC,D是棱BC的中点,点M在棱BB1上,且CM⊥AC1
(1)求证:A1B∥平面AC1D;
(2)求证:CM⊥C1D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,角A,B,C的对边分别是a,b,c已知c•cosB+(b-2a)cosC=0
(1)求角C的大小
(2)若c=2,a+b=ab,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在平面直角坐标系中,曲线f(x)=alnx+x在x=a处的切线过原点,则a=(  )
A.1B.eC.$\frac{1}{e}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{e}^{x}}{x}$-m(lnx+$\frac{1}{x}$)(m为实数,e=2.71828…是自然对数的底数).
(Ⅰ)当m>1时,讨论f(x)的单调性;
(Ⅱ)若g(x)=x2f′(x)-xex在($\frac{3}{2}$,3)内有两个零点,求实数m的取值范围.
(Ⅲ)当m=1时,证明:xf(x)+xlnx+1>x+$\frac{ln(x+1)}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某工厂为了对新研发的一种产品进行合理定价,将该定价按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(元)908483807568
(1)求回归直线方程$\hat y=bx+a$;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?
附:$b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},a=\overline y-b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个学生通过某次数学测试的概率是$\frac{3}{4}$,他连续测试n次,要保证他至少有一次通过的概率大于0.99,那么n的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1-2sinθcosθ}{{{{cos}^2}θ-{{sin}^2}θ}}$的值.

查看答案和解析>>

同步练习册答案