精英家教网 > 高中数学 > 题目详情
11.已知两点A(-1,0)、B(0,2),点P是圆(x-1)2+y2=1上任意一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值是3+$\sqrt{13}$.

分析 设P(x,y),根据向量数量积的定义求出表达式,然后利用两点间的距离公式进行求解即可.

解答 解:设P(x,y),
则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(-1-x,-y)•(-x,2-y)=(1+x)x-y(2-y)=x2+x+y2-2y=(x+$\frac{1}{2}$)2+(y-1)2-$\frac{5}{4}$,
设z=(x+$\frac{1}{2}$)2+(y-1)2,则z的几何意义是P到定点D(-$\frac{1}{2}$,1)的距离的平方,
圆心C(1,0),半径R=1,
则CD=$\sqrt{(-\frac{1}{2}-1)^{2}+{1}^{2}}$=$\frac{\sqrt{13}}{2}$,
则PD的最大值为CD+r=$\frac{\sqrt{13}}{2}$+1,则PD的平方得($\frac{\sqrt{13}}{2}$+1)2=$\frac{13}{4}$+$\sqrt{13}$+1,
则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值为$\frac{13}{4}$+$\sqrt{13}$+1-$\frac{5}{4}$=3+$\sqrt{13}$,
故答案为:3+$\sqrt{13}$

点评 本题主要考查向量数量积的应用,利用两点间的距离公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知集合A={x|x2-2x-3≤0},B={x|y=ln(2-x)},则A∩B=[-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点分别为F1,F2,点P为椭圆上不同于左右顶点的任意一点,△F1PF2的重心为G,内心为I,且有$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,则椭圆C的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}满足$\frac{ln{a}_{1}}{3}$•$\frac{ln{a}_{2}}{6}$•$\frac{ln{a}_{3}}{9}$•…•$\frac{ln{a}_{n}}{3n}$=$\frac{3n}{2}$(n∈N*),则 a10=(  )
A.e30B.e${\;}^{\frac{100}{3}}$C.e${\;}^{\frac{110}{3}}$D.e40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=|x-a|-ax,其中a>0.
(1)解不等式f(x)<0;
(2)当0<a≤1时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知斜三棱柱ABC一A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1
(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求二面角A-A1B-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=($\frac{2}{5}$)${\;}^{\frac{3}{5}}$,b=($\frac{2}{5}$)${\;}^{\frac{2}{5}}$,c=($\frac{3}{5}$)${\;}^{\frac{3}{5}}$,则a,b,c大小关系是(  )
A.a>b>cB.c>a>bC.b>c>aD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列说法正确的有:(1)(4)
(1)在△ABC中,当sinA>sinB时,一定有A>B;
(2)在△ABC中,2cosBsinA=sinC,则△ABC的一定是等腰直角三角形;
(3)在△ABC中,若a=6,b=9,A=45°,则解该三角形有两解;
(4)函数f(x)=$\sqrt{3}$sin2x-cos2x的图象可以由函数g(x)=4sinxcosx的图象向右平移$\frac{π}{12}$个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数据x1,x2,…,x10的方差为3,那么数据2x1+3,2x2+3,…2x10+3的方差为12.

查看答案和解析>>

同步练习册答案