精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左,右焦点分别为F1,F2,点P为椭圆上不同于左右顶点的任意一点,△F1PF2的重心为G,内心为I,且有$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,则椭圆C的离心率为$\frac{1}{2}$.

分析 设P(x0,y0),G为△F1PF2的重心,可得G$(\frac{{x}_{0}}{3},\frac{{y}_{0}}{3})$.由$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,可得IG∥x轴,I的纵坐标为$\frac{{y}_{0}}{3}$,再利用三角形面积计算公式即可得出.

解答 解:设P(x0,y0),∵G为△F1PF2的重心,
∴G点坐标为 G$(\frac{{x}_{0}}{3},\frac{{y}_{0}}{3})$,∵$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,∴IG∥x轴,
∴I的纵坐标为$\frac{{y}_{0}}{3}$,
在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c
∴S△F1PF2=$\frac{1}{2}$•|F1F2|•|y0|,
又∵I为△F1PF2的内心,∴I的纵坐标即为内切圆半径,
∴S△F1PF2=$\frac{1}{2}$•(|PF1|+|F1F2|+|PF2|)$|\frac{{y}_{0}}{3}|$=$\frac{1}{2}$•|F1F2|•|y0|,
(2a+2c)=3×2c,
∴2c=a,
∴$e=\frac{c}{a}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了椭圆的标准方程及其性质、三角形的重心与内心的性质、三角形面积计算公式、向量共线定理,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn=n2-4n,求数列{an}的通项an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,?ABCD和?ABEF全等,AP=DQ,将?ABEF沿AB折起.
(1)求证:PQ∥平面ADF;
(2)无论?ABEF折到什么位置,PQ与FD都平行吗?若要成立,需要什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题“?x∈R,x2+2x-6>0”的否定?x∈R,x2+2x-6≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=|x-2|-|lnx|在定义域内零点的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,AC=4,BC=3,AB=5,O为△ABC的内心,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中0≤x≤1,0≤y≤1,则动点P的轨迹所覆盖的Q区域面积为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,偶函数f(x)的图象如字母M,奇函数g(x)的图象如字母N,若方程f(g(x))=0,g(f(x))=0的实根个数分别为m、n,则m+n=(  )
A.12B.18C.16D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知两点A(-1,0)、B(0,2),点P是圆(x-1)2+y2=1上任意一点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值是3+$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算:sin$\frac{13π}{2}$=1,cos$\frac{19π}{3}$=$\frac{1}{2}$,tan405°=1.

查看答案和解析>>

同步练习册答案