分析 设P(x0,y0),G为△F1PF2的重心,可得G$(\frac{{x}_{0}}{3},\frac{{y}_{0}}{3})$.由$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,可得IG∥x轴,I的纵坐标为$\frac{{y}_{0}}{3}$,再利用三角形面积计算公式即可得出.
解答 解:设P(x0,y0),∵G为△F1PF2的重心,![]()
∴G点坐标为 G$(\frac{{x}_{0}}{3},\frac{{y}_{0}}{3})$,∵$\overrightarrow{IG}$=t$\overrightarrow{{F}_{1}{F}_{2}}$,∴IG∥x轴,
∴I的纵坐标为$\frac{{y}_{0}}{3}$,
在焦点△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c
∴S△F1PF2=$\frac{1}{2}$•|F1F2|•|y0|,
又∵I为△F1PF2的内心,∴I的纵坐标即为内切圆半径,
∴S△F1PF2=$\frac{1}{2}$•(|PF1|+|F1F2|+|PF2|)$|\frac{{y}_{0}}{3}|$=$\frac{1}{2}$•|F1F2|•|y0|,
(2a+2c)=3×2c,
∴2c=a,
∴$e=\frac{c}{a}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查了椭圆的标准方程及其性质、三角形的重心与内心的性质、三角形面积计算公式、向量共线定理,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 18 | C. | 16 | D. | 14 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com