精英家教网 > 高中数学 > 题目详情

【题目】改革开放四十年以来,北京市居民生活发生了翻天覆地的变化.随着经济快速增长、居民收入稳步提升,消费结构逐步优化升级,生活品质显著增强,美好生活蓝图正在快速构建.北京市城镇居民人均消费支出从1998年的7 500元增长到2017年的40 000元.1998年与2017年北京市城镇居民消费结构对比如下图所示:

1998年北京市城镇居民消费结构 2017年北京市城镇居民消费结构

则下列叙述中不正确的是( )

A. 2017年北京市城镇居民食品支出占比同1998年相比大幅度降低

B. 2017年北京市城镇居民人均教育文化娱乐类支出同1998年相比有所减少

C. 2017年北京市城镇居民医疗保健支出占比同1998年相比提高约

D. 2017年北京市城镇居民人均交通和通信类支出突破5 000元,大约是1998年的14倍

【答案】B

【解析】

2017年北京市城镇居民人均教育文化娱乐类支出:11%×40000=4400元,1998年北京市城镇居民人均教育文化娱乐类支出:14%×7500=1050元,故2017年北京市城镇居民人均教育文化娱乐类支出同1998年相比明显增加.

由1998年与2017年北京市城镇居民消费结构对比图,知:

A中,2017年北京市城镇居民食品支出占比同1998年相比大幅度降低,故A正确;

B中,2017年北京市城镇居民人均教育文化娱乐类支出:11%×40000=4400元,

1998年北京市城镇居民人均教育文化娱乐类支出:14%×7500=1050元,

故2017年北京市城镇居民人均教育文化娱乐类支出同1998年相比明显增加,故B错误;

C中,2017年北京市城镇居民医疗保健支出占比同1998年相比提高约60%,故C正确;

D中,2017年北京市城镇居民人均交通和通信类支出突破5000元,大约是1998年的14倍,故D正确.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形均为菱形,,且.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,分别是的中点.

(1)证明:平面平面

(2)求三棱锥的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面推理过程中使用了类比推理方法,其中推理正确的是( )

A. 平面内的三条直线,若,则.类比推出:空间中的三条直线,若,则

B. 平面内的三条直线,若,则.类比推出:空间中的三条向量,若,则

C. 在平面内,若两个正三角形的边长的比为,则它们的面积比为.类比推出:在空间中,若两个正四面体的棱长的比为,则它们的体积比为

D. ,则复数.类比推理:,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】黄冈市有很多名优土特产,黄冈市的蕲春县就有闻名于世的“蕲春四宝”蕲竹、蕲艾、蕲蛇、蕲龟,很多人慕名而来旅游,通过随机询问60名不同性别的游客在购买“蕲春四宝”时是否在来蕲春县之前就知道“蕲春四宝”,得到如下列联表:

总计

事先知道“蕲春四宝”

8

事先不知道“蕲春四宝”

4

36

总计

40

附:

写出列联表中各字母代表的数字;

由以上列联表判断,能否在犯错误的概率不超过的前提下认为购买“蕲春四宝”和是否“事先知道蕲春四宝有关系”?

从被询问的名事先知道“蕲春四宝”的顾客中随机选取2名顾客,求抽到的女顾客人数的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为节能环保,推进新能源汽车推广和应用,对购买纯电动汽车的用户进行财政补贴,财政补贴由地方财政补贴和国家财政补贴两部分组成. 某地补贴政策如下(表示纯电续航里程):

三个纯电动汽车店分别销售不同品牌的纯电动汽车,在一个月内它们的销售情况如下:

(每位客户只能购买一辆纯电动汽车

(1)从上述购买纯电动汽车的客户中随机选一人,求此人购买的是店纯电动汽车且享受补贴不低于3.5万元的概率;

(2)从上述两个纯电动汽车店的客户中各随机选一人,求恰有一人享受5万元财政补贴的概率;

(3)从上述三个纯电动汽车店的客户中各随机选一人, 这3个人享受的财政补贴分别记为. 求随机变量的分布列. 试比较数学期望的大小;比较方差 的大小. (只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,°,平面平面分别为中点.

(1)求证:平面;

(2)求二面的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校共有学生15000人,其中男生10500人,女生4500人.为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集200位学生每周平均体育运动时间的样本数据(单位:小时)

1)应收集多少位女生的样本数据?

2)根据这200个样本数据,得到学生每周平均体育运动时间的频率分布直方图,其中样本数据的分组区间为:.估计该校学生每周平均体育运动时间超过4小时的概率.

3)在样本数据中,有40位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为该校学生的每周平均体育运动时间与性别有关.(把表简要画在答题卡上)

男生

女生

总计

每周平均体育运动时间不超过4小时

每周平均体育运动时间超过4小时

总计

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】洛萨科拉茨Collatz是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n是奇数,则将它乘3加,不断重复这样的运算,经过有限步后,一定可以得到如初始正整数为6,按照上述变换规则,我们得到一个数列:6,3,10,5,16,8,4,2,对科拉茨猜想,目前谁也不能证明,更不能否定现在请你研究:如果对正整数首项按照上述规则施行变换注:1可以多次出现后的第八项为1,则n的所有可能的取值为______

查看答案和解析>>

同步练习册答案