【题目】如图,直三棱柱中,,,分别是的中点.
(1)证明:平面平面;
(2)求三棱锥的高.
【答案】(1)证明见解析;(2)1.
【解析】分析:(1)要证明平面平面,利用平面与平面垂直的判定定理,在其中一个平面内找一条直线与另一个平面垂直。由,是的中点,可得。因为三棱柱为直三棱柱,所以平面,进而可得。由已知条件直三棱柱中,,,分别是的中点.可得:,进而得∽,所以,所以。因为,由直线与平面垂直的判定定理可得平面,再由平面与平面垂直的判定定理可得平面平面。(2)求三棱锥的高,直接作高不容易判断垂足的位置,故可以用等体积法求高。由(1)可知可用 来求。由(1)知直线平面ADE,故求,,,进而求得。由条件可求得, ,知三角形边长要求面积,应先求一个角,故由余弦定理推论可得:,进而求,可求, 设三棱锥的高为,由,得:,解得.
详解:(1)由已知得:
所以∽
所以,所以
又因为,是的中点,所以
所以平面,所以
而,所以平面
又平面,
所以平面平面;
(2)设三棱锥的高为,因为,
所以,
由已知可求得, ,
在中,由余弦定理的推论可得 ,
所以,所以,
由,得:,所以.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣1﹣alnx.
(Ⅰ)若 f(x)≥0,求a的值;
(Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是 ( )
A. “”是“”的充分不必要条件;
B. 如果命题“”与命题“p或q”都是真命题,那么命题一定是真命题.
C. 若命题p:,则;
D. 命题“若,则”的否命题是:“若,则”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-5:不等式选讲]
已知函数f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为 . (参考数据:sin15°=0.2588,sin7.5°=0.1305)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x+1)ex和函数g(x)=(ex﹣a)(x﹣1)2(a>0)(e为自然对数的底数).
(1)求函数f(x)的单调区间;
(2)判断函数g(x)的极值点的个数,并说明理由;
(3)若函数g(x)存在极值为2a2 , 求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设椭圆(a>2)的离心率为,斜率为k(k>0)的直线L过点E(0,1)且与椭圆交于C,D两点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l与x轴相交于点G,且,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com