【题目】如图所示,三棱锥P﹣ABC中,D是AC的中点,,,.
(1)求证:PD⊥平面ABC;
(2)求二面角P﹣AB﹣C的正切值大小.
【答案】(1)见解析 (2)
【解析】
(1)连接,推导出,由此能证明平面.(2)取的中点,连接,则,由,得,由平面,得,由,得平面,从而,进而是二面角的平面角,解三角形求得二面角的正切值.
(1)连接BD,∵D是AC的中点,,∴.
∵,,,∴.
∴,即AB⊥BC.
∴.
∵,,
∴.∴PD⊥BD.
∵AC∩BD=D,∴PD⊥平面ABC.
(2)取AB的中点E,连接DE、PE,
由E为AB的中点,知DE∥BC,
∵AB⊥BC,∴AB⊥DE.∵PD⊥平面ABC,∴PD⊥AB.
又AB⊥DE,,
∴AB⊥平面PDE,∴PE⊥AB.
∴是二面角P﹣AB﹣C的平面角.
在△PED中,,,,
∴ .
∴二面角P﹣AB﹣C的正切值为.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=cos(x+ ),则下列结论错误的是( )
A.f(x)的一个周期为﹣2π
B.y=f(x)的图象关于直线x= 对称
C.f(x+π)的一个零点为x=
D.f(x)在( ,π)单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某科研机构研发了某种高新科技产品,现已进入实验阶段.已知实验的启动资金为10万元,从实验的第一天起连续实验,第天的实验需投入实验费用为元,实验30天共投入实验费用17700元.
(1)求的值及平均每天耗资最少时实验的天数;
(2)现有某知名企业对该项实验进行赞助,实验天共赞助元.为了保证产品质量,至少需进行50天实验,若要求在平均每天实际耗资最小时结束实验,求的取值范围.(实际耗资=启动资金+试验费用-赞助费)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系中,圆与轴负半轴交于点,过点 的直线,分别与圆交于,两点.
(1)若,,求△的面积;
(2)过点作圆O的两条切线,切点分别为E,F,求;
(3)若,求证:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且A,B两点的纵坐标之积为﹣4.
(1)求抛物线C的方程;
(2)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,求证:直线AP与x轴交于一定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.
(1)求证:AF=FO;
(2)若CF= ,求ADAE的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值.(精确到1辆/小时).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥P-ABCD中,O为底面正方形的中心,侧棱PA与底面ABCD所成的角的正切值为.
(1)若E是PB的中点,求证OE∥平面PCD
(2)求侧面PAD与底面ABCD所成的二面角的大小
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com