精英家教网 > 高中数学 > 题目详情
袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1个球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用X表示取球终止所需要的取球次数,
(1)求袋中所有白球的个数;
(2)求随机变量X的概率分布列;
(3)求甲取到白球的概率。
解:(1 )设袋中原有n个白球,
由题意知,可得n=3或n=-2(舍去),
即袋中有3个白球。
(2)由题意,X的可能取值为1、2、3、4、5,
P(X=1)=P(X=2)=
P(X=3)=P(X=4)=
P(X=5)=
所以X的分布列为

(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取球,
记“甲取到白球”为事件A ,
则P(A)=P(X=1)+P(X=3)+P(X=5)=
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
17
.现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,
(I)求袋中原有白球的个数和;
(II)求取球两次停止的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取1个球是白球的概率为
37
.现有甲、乙两人从袋中轮流摸取1球,取后不放回:甲先取,乙后取,然后甲再取…,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的.
(1)求取球2次终止的概率;
(2)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
17
.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的.
(1)求袋中原有白球的个数;
(2)求取球两次终止的概率
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
17
,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取…,取后不放回,直到两人中有一人取到白球时即终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求袋中原有白球的个数;
(2)求随机变量ξ的概率分布;
(3)求甲取到白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•盐城一模)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为
27
.现在甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止.每个球在每一次被取出的机会是等可能的,用ξ表示取球终止时所需要的取球次数.
(Ⅰ)求袋中原有白球的个数;
(Ⅱ)求随机变量ξ的概率分布及数学期望Eξ;
(Ⅲ)求甲取到白球的概率.

查看答案和解析>>

同步练习册答案