精英家教网 > 高中数学 > 题目详情
11.已知Sn为数列{an}的前n项和,且Sn=1-$\frac{1}{{2}^{n}}$,则a5等于(  )
A.$\frac{1}{{2}^{5}}$B.$\frac{1}{{2}^{4}}$C.$\frac{1}{2}$D.2

分析 利用Sn+1-Sn可知an+1的表达式,进而计算即得结论.

解答 解:∵Sn=1-$\frac{1}{{2}^{n}}$,
∴Sn+1=1-$\frac{1}{{2}^{n+1}}$,
∴an+1=Sn+1-Sn=(1-$\frac{1}{{2}^{n+1}}$)-(1-$\frac{1}{{2}^{n}}$)=$\frac{1}{{2}^{n+1}}$,
又∵a1=S1=1-$\frac{1}{2}$=$\frac{1}{2}$满足上式,
∴an=$\frac{1}{{2}^{n}}$,
∴a5=$\frac{1}{{2}^{5}}$,
故选:A.

点评 本题考查数列的通项,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若a=2+i,则1-C${\;}_{16}^{1}$a+C${\;}_{16}^{2}$a2-C${\;}_{16}^{3}$a3+…+C${\;}_{16}^{15}$a15+C${\;}_{16}^{16}$a16的值为(  )
A.28B.-28C.(3-i)16D.(3+i)16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(-2sinx,$\sqrt{3}$(cosx+sinx)),$\overrightarrow{b}$=(cosx,cosx-sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$(x∈R).
(Ⅰ)求f(x)在x∈[-$\frac{π}{2}$,0]时的值域;
(Ⅱ)已知数列an=n2f($\frac{nπ}{2}$-$\frac{11π}{24}$)(n∈N+),求{an}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.等差数列{an}中,a1=8,a100=107,则a107=(  )
A.117B.110C.97D.114

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.个人取得的劳务报酬,应当交纳个人所得税.每月劳务报酬收入(税前)不超过800元不用交税;超过800元时,应纳税所得额及税率按下表分段计算:
劳务报酬收入(税前)应纳税所得额税率
劳务报酬收入(税前)不超过4000元劳务报酬收入(税前)减800元20%
劳报报酬收入(税前)超过4000元劳务报酬收入(税前)的80%20%
(注:应纳税所得额单次超过两万,另有税率计算方法.)
某人某月劳务报酬应交税款为800元,那么他这个月劳务报酬收入(税前)为5000元.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知ab>0,a+b=2,则$\frac{{a}^{2}+b}{ab}$的最小值为$\frac{1}{2}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l经过点P(2,1),且斜率为2,
(1)求直线l的方程;
(2)若直线m与直线l平行,且在y轴上的截距为3,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的前n项和为Sn,且a10=19,S5=25.
(1)求数列{an}的通项公式;     
(2)若bn=${2^{{a_n}+1}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某人年初用98万元购买了一条渔船,第一年各种费用支出为12万元,以后每年都增加4万元,而每年捕鱼收益为50万元.
(1)第几年他开始获利?
(2)若干年后,船主准备处理这条渔船,有两种方案:
①年平均获利最大时,以26万元出售这条渔船;②总收入最多时,以8万元出售这条渔船.
请你帮他做出决策.

查看答案和解析>>

同步练习册答案