精英家教网 > 高中数学 > 题目详情
3.如图,在三棱锥A-BCD中,平面ABC⊥平面BCD,△BAC与△BCD均为等腰直角三角形,且∠BAC=∠BCD=90°,BC=2,点P是线段AB上的动点,若线段CD上存在点Q,使得异面直线PQ与AC成30°的角,则线段PA长的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$)B.(0,$\frac{\sqrt{6}}{3}$)C.($\frac{\sqrt{2}}{2}$,$\sqrt{2}$)D.($\frac{\sqrt{6}}{3}$,$\sqrt{2}$)

分析 以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出线段PA长的取值范围.

解答 解:以C为原点,CD为x轴,CB为y轴,过C作平面BCD的垂线为z轴,
建立空间直角坐标系,
则A(0,1,1),B(0,2,0),C(0,0,0),
设Q(q,0,0),$\overrightarrow{AP}=λ\overrightarrow{AB}$=(0,λ,-λ),
则$\overrightarrow{PQ}$=$\overrightarrow{CQ}$-$\overrightarrow{CP}$=$\overrightarrow{CQ}-(\overrightarrow{CA}+\overrightarrow{AP})$=(q,0,0)-(0,1,1)-(0,λ,-λ)=(q,-1-λ,λ-1),
∵异面直线PQ与AC成30°的角,
∴cos30°=$\frac{|\overrightarrow{CA}•\overrightarrow{PQ}|}{|\overrightarrow{CA}|•|\overrightarrow{PQ}|}$=$\frac{2}{\sqrt{2}•\sqrt{{q}^{2}+(1+λ)^{2}+(λ-1)^{2}}}$=$\frac{\sqrt{2}}{\sqrt{{q}^{2}+2{λ}^{2}+2}}$=$\frac{\sqrt{3}}{2}$,
∴q2+2λ2+2=$\frac{8}{3}$,∴${q}^{2}=\frac{2}{3}-2{λ}^{2}∈[0,4]$,
∴$\left\{\begin{array}{l}{\frac{2}{3}-2{λ}^{2}≥0}\\{\frac{2}{3}-2{λ}^{2}≤4}\end{array}\right.$,解得0$≤λ≤\frac{\sqrt{3}}{3}$,
∴|$\overrightarrow{AP}$|=$\sqrt{2}λ$∈[0,$\frac{\sqrt{6}}{3}$],
∴线段PA长的取值范围是[0,$\frac{\sqrt{6}}{3}$].
故选:B.

点评 本题考查线段的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源:2017届湖南衡阳县四中高三9月月考数学(文)试卷(解析版) 题型:选择题

函数的图象大致是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$过点$({\sqrt{2},\sqrt{2}})$,直线l:y=kx(k≠0)与椭圆E交于P、A两点,过点P作PC⊥x轴,垂足为C点,直线AC交椭圆E与另一点B,当$k=\sqrt{2}$时,椭圆E的右焦点到直线l的距离为$\sqrt{2}$.
(1)求椭圆E的方程;
(2)试问∠APB是否为定值?若为定值,求出其值;若不为定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知公差不为0的等差数列{an},若a2+a4=10,且a1、a2、a5成等比数列,则a1=1,an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f($\frac{x}{2}$)=-$\frac{1}{8}$x3+$\frac{m}{4}$x2-m,g(x)=-$\frac{1}{2}$x3+mx2+(a+1)x+2xcosx-m.
(1)若曲线y=f(x)仅在两个不同的点A(x1,f(x1)),B(x1,f(x2))处的切线都经过点(2,t),求证:t=3m-8,或t=-$\frac{1}{27}$m3+$\frac{2}{3}$m2-m.
(2)当x∈[0,1]时,若f(x)≥g(x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.四面体ABCD中∠BAC=∠BAD=∠CAD=60°,AB=2,AC=3,AD=4,则四面体ABCD的体积V=(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图是甲、乙汽车4S店7个月销售汽车数量(单位:台)的茎叶图,若x是4与6的等差中项,y是2和8的等比中项,设甲店销售汽车的众数是a,乙店销售汽车中位数为b,则a+b的值为(  )
A.168B.169C.170D.171

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)对任意x∈R都有f(x+2)+f(x-2)=2f(2),若y=f(x+1)的图象关于点(-1,0)对称,且f(1)=2,则f(2009)=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=ex-ax,a是常数.
(Ⅰ)若a=1,且曲线y=f(x)的切线l经过坐标原点(0,0),求该切线的方程;
(Ⅱ)讨论f(x)的零点的个数.

查看答案和解析>>

同步练习册答案