精英家教网 > 高中数学 > 题目详情

【题目】设正项等差数列的前n项和为,已知成等比数列

1)求数列的通项公式;

2)若,求数列的前n项和;

3)设数列满足求证:

【答案】(1) (2) 数列的前n项和为 (3)证明见解析.

【解析】

(1)等差数列的首项为,公差为,由条件可得,即,两式联立可得:,或,经检验满足条件.

(2),可得当时,,当时,,则当时,,当时,,分情况求和即可.
(3) 由(1)有,由,则则,则不等式显然成立. ,,由裂项相消法求和可证明.

(1)等差数列的首项为,公差为

,即……

成等比数列,有,即……

将①代入②得:

解得:,或.

时,与题目矛盾,舍去.

时,,满足条件,此时

(2)

时,,即

时,,即

设数列的前n项和为

所以当时,

时,

所以数列的前n项和为

(3)由(1)有

,所以

则不等式显然成立.

所以

综上所以成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足,且.

1)求数列的通项公式;

2)求证:数列是等差数列,求数列的通项公式;

3)若,数列的前项和为,对任意的,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,抛物线的准线被椭圆截得的线段长为

(1)求椭圆的方程;

(2)如图,点分别是椭圆的左顶点、左焦点直线与椭圆交于不同的两点都在轴上方).且.证明:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果存在函数为常数),使得对一切实数都成立,则称为函数的一个承托函数.给出如下命题:

① 函数是函数的一个承托函数;

② 函数是函数的一个承托函数;

③ 若函数是函数的一个承托函数,则的取值范围是

④ 值域是的函数不存在承托函数。 其中,所有正确命题的序号是__

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前我国城市的空气污染越来越严重,空气质量指数一直居高不下,对人体的呼吸系统造成了严重的影响,现调查了某城市500名居民的工作场所和呼吸系统健康,得到列联表如下:

室外工作

室内工作

合计

有呼吸系统疾病

150

无呼吸系统疾病

100

合计

200

(Ⅰ)请把列联表补充完整;

(Ⅱ)你是否有95%的把握认为感染呼吸系统疾病与工作场所有关;

(Ⅲ)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机抽取2人,求2人都有呼吸系统疾病的概率.

参考公式与临界表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,满足,数列满足,且.

1)求数列的通项公式;

2)求证:数列是等差数列,求数列的通项公式;

3)若,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)处取得极值,求的值;

(2),试讨论函数的单调性;

(3)时,若存在正实数满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设n∈N*,f(n)=3n+7n-2.

(1)求f(1),f(2),f(3)的值;

(2)证明:对任意正整数n,f(n)是8的倍数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体,直角三角形也可以推广到直角四面体,如果四面体中棱两两垂直,那么称四面体为直角四面体. 请类比直角三角形中的性质给出2个直角四面体中的性质,并给出证明.(请在结论中选择1个,结论4,5中选择1个,写出它们在直角四面体中的类似结论,并给出证明,多选不得分,其中表示斜边上的高,分别表示内切圆与外接圆的半径)

直角三角形

直角四面体

条件

结论1

结论2

结论3

结论4

结论5

查看答案和解析>>

同步练习册答案