【题目】设正项等差数列的前n项和为,已知且成等比数列
(1)求数列的通项公式;
(2)若,求数列的前n项和;
(3)设数列满足求证:
【答案】(1) (2) 数列的前n项和为 (3)证明见解析.
【解析】
(1)等差数列的首项为,公差为,由条件可得,,即,两式联立可得:,或,经检验满足条件.
(2)设,可得当时,,当时,,则当时,,当时,,分情况求和即可.
(3) 由(1)有,由有,则则或,若则不等式显然成立. 若,则,由裂项相消法求和可证明.
(1)等差数列的首项为,公差为,
由有,即…… ①
由成等比数列,有,即……②
将①代入②得:
即解得:,或.
当时,与题目矛盾,舍去.
当时,,满足条件,此时
(2)设,
当时,,即
当时,,即
设数列的前n项和为
所以当时,
当时,
所以数列的前n项和为
(3)由(1)有
由有,所以
则或
若则不等式显然成立.
若,
则
即所以
则
综上所以成立.
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,,数列满足,,且.
(1)求数列的通项公式;
(2)求证:数列是等差数列,求数列的通项公式;
(3)若,数列的前项和为,对任意的,都有,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,抛物线的准线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)如图,点分别是椭圆的左顶点、左焦点直线与椭圆交于不同的两点(都在轴上方).且.证明:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果存在函数(为常数),使得对一切实数都成立,则称为函数的一个承托函数.给出如下命题:
① 函数是函数的一个承托函数;
② 函数是函数的一个承托函数;
③ 若函数是函数的一个承托函数,则的取值范围是;
④ 值域是的函数不存在承托函数。 其中,所有正确命题的序号是__.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前我国城市的空气污染越来越严重,空气质量指数一直居高不下,对人体的呼吸系统造成了严重的影响,现调查了某城市500名居民的工作场所和呼吸系统健康,得到列联表如下:
室外工作 | 室内工作 | 合计 | |
有呼吸系统疾病 | 150 | ||
无呼吸系统疾病 | 100 | ||
合计 | 200 |
(Ⅰ)请把列联表补充完整;
(Ⅱ)你是否有95%的把握认为感染呼吸系统疾病与工作场所有关;
(Ⅲ)现采用分层抽样从室内工作的居民中抽取一个容量为6的样本,将该样本看成一个总体,从中随机抽取2人,求2人都有呼吸系统疾病的概率.
参考公式与临界表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为,满足,,数列满足,,且.
(1)求数列的通项公式;
(2)求证:数列是等差数列,求数列的通项公式;
(3)若,求数列的前项和。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面图形很多可以推广到空间中去,例如正三角形可以推广到正四面体,圆可以推广到球,平行四边形可以推广到平行六面体,直角三角形也可以推广到直角四面体,如果四面体中棱两两垂直,那么称四面体为直角四面体. 请类比直角三角形中的性质给出2个直角四面体中的性质,并给出证明.(请在结论中选择1个,结论4,5中选择1个,写出它们在直角四面体中的类似结论,并给出证明,多选不得分,其中表示斜边上的高,分别表示内切圆与外接圆的半径)
直角三角形 | 直角四面体 | |
条件 | ||
结论1 | ||
结论2 | ||
结论3 | ||
结论4 | ||
结论5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com