【题目】已知数列
的前
项和为
,满足
,
,数列
满足
,
,且
.
(1)求数列
的通项公式;
(2)求证:数列
是等差数列,求数列
的通项公式;
(3)若
,求数列
的前
项和
。
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,
,
,
,
,
,
.
(I)求异面直线
与
所成角的余弦值;
(II)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直三棱柱
中,
,
分别是
,
的中点,
,
为棱
上的点.
![]()
证明:
;
证明:
;
是否存在一点
,使得平面
与平面
所成锐二面角的余弦值为
?若存在,说明点
的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,已知平面
平面
,底面
为梯形,
,且
,
,
,
,
在棱
上且满足
.
![]()
(1)求证:
平面
;
(2)求证:
平面
;
(3)求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着互联网经济逐步被人们接受,网上购物的人群越来越多,网银交易额也逐年增加,某地连续五年的网银交易额统计表,如表所示:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
网银交易额 | 5 | 6 | 7 | 8 | 10 |
经研究发现,年份与网银交易额之间呈线性相关关系,为了计算的方便,工作人员将上表的数据进行了处理,
,
,得到如表:
时间代号 | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 2 | 3 | 5 |
(1)求
关于
的线性回归方程;
(2)通过(1)中的方程,求出
关于
的回归方程;
(3)用所求回归方程预测2020年该地网银交易额.
(附:在线性回归方程
中,
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com