精英家教网 > 高中数学 > 题目详情
12.数列{an}满足下列条件:a1=1,a2=$\frac{1}{2}$,an+2=$\frac{{{a_n}+{a_{n+1}}}}{2}$,(n∈N*).
(1)设bn=an+1-an,求数列{bn}的通项公式;
(2)若cn=bn•log2|bn|,求数列{cn}的前n项和Sn

分析 (1)由已知有bn=an+1-an=an+1-(2an+2-an+1)=2bn-1,${b_1}={a_2}-{a_1}=-\frac{1}{2}$,由此能证明{bn}是等比数列,并能求出数列{bn}的通项公式.
(2)由${c_n}={b_n}•{log_2}|{b_n}|=-n{({-\frac{1}{2}})^n}$,利用错位相减法能求出数列{cn}的前n项和Sn

解答 解:(1)∵数列{an}满足下列条件:a1=1,a2=$\frac{1}{2}$,an+2=$\frac{{{a_n}+{a_{n+1}}}}{2}$,(n∈N*).
bn=an+1-an
∴由已知有bn=an+1-an=an+1-(2an+2-an+1
=2(an+1-an+2)=2bn-1
又${b_1}={a_2}-{a_1}=-\frac{1}{2}$,
∴{bn}是首项为$-\frac{1}{2}$,公比为$-\frac{1}{2}$的等比数列,
∴${b_n}={b_1}{q^{n-1}}={({-\frac{1}{2}})^n}$.…(6分)
(2)∵cn=bn•log2|bn|,∴${c_n}={b_n}•{log_2}|{b_n}|=-n{({-\frac{1}{2}})^n}$,
即${S_n}=-1•{({-\frac{1}{2}})^1}-2•{({-\frac{1}{2}})^2}-3•{({-\frac{1}{2}})^3}-…-({n-1})•{({-\frac{1}{2}})^{n-1}}-n•{({-\frac{1}{2}})^n}$…①
于是$-\frac{1}{2}{S_n}=-1•{({-\frac{1}{2}})^2}-2•{({-\frac{1}{2}})^3}-3•{({-\frac{1}{2}})^4}-…-({n-1})•{({-\frac{1}{2}})^n}-n•{({-\frac{1}{2}})^{n+1}}$…②
①-②,得:$\frac{3}{2}{S_n}=-{({-\frac{1}{2}})^1}-{({-\frac{1}{2}})^2}-{({-\frac{1}{2}})^3}-…-{({-\frac{1}{2}})^n}+n•{({-\frac{1}{2}})^{n+1}}$
=$\frac{{({-\frac{1}{2}})[{1-{{({-\frac{1}{2}})}^n}}]}}{{1-({-\frac{1}{2}})}}+n•{({-\frac{1}{2}})^{n+1}}$
∴${S_n}=\frac{2}{9}[{1-{{({-\frac{1}{2}})}^2}}]+\frac{2n}{3}•{({-\frac{1}{2}})^{n+1}}$.…(12分)

点评 本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.由直线y=x-4,曲线y=$\sqrt{2x}$以及x轴所围成的图形面积为(  )
A.$\frac{25}{2}$B.13C.$\frac{40}{3}$D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=sinx+acosx图象的一条对称轴是x=$\frac{π}{4}$,且当x=θ时,函数g(x)=sinx+f(x)取得最大值,则cosθ=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列四个函数中,在区间[0,+∞)上单调递增的函数是(  )
A.f(x)=-x+3B.$f(x)=-\frac{1}{x}$C.f(x)=|x-1|D.f(x)=(x+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图([x]表示不超过x的最大整数),则输出S的值为(  )
A.4B.5C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)满足f(x+1)=x2-$\frac{1}{3}$f(3).
(1)设g(x)=f(x)+3|x-1|,求g(x)在[0,3]上的值域;
(2)当x∈(-2,-$\frac{1}{2}$)时,不等式f(a)+4a<(a+2)f(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果直线l1:4ax+y+2=0与直线l2:(1-3a)x+ay-2=0平行,那么直线l2在y轴上的截距为(  )
A.8B.-8C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合M={x|0<x≤3},N={ x|0<x≤2},则“a∈M”是“a∈N”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“lnx<1”是“x<e”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

同步练习册答案