精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)满足f(x+1)=x2-$\frac{1}{3}$f(3).
(1)设g(x)=f(x)+3|x-1|,求g(x)在[0,3]上的值域;
(2)当x∈(-2,-$\frac{1}{2}$)时,不等式f(a)+4a<(a+2)f(x2)恒成立,求a的取值范围.

分析 (1)令x=2,可求得f(3)=3,再令x+1=t,可求得f(x)=x2-2x;利用二次函数与指数函数的单调性可求得g(x)=f(x)+3|x-1|在[0,3]上的值域;
(2)由(1)知f(a)+4a<(a+2)f(x2)即为a2+2a<(a+2)f(x2),通过对a+2=0与a+2>0、a+2<0的分类讨论,分离出参数a,分别求得对应情况下a的取值范围,取并即可.

解答 解:(1)令x=2,得$f(3)=4-\frac{1}{3}f(3)$,∴f(3)=3,
令x+1=t,则x=t-1,∴f(t)=(t-1)2-1=t2-2t,
∴f(x)=x2-2x.…(3分)
∵y=3|x-1|与y=f(x)都在[0,1)上递减,(1,3]上递增,
∴g(x)在[0,1)上递减,(1,3]上递增,
∴g(x)min=g(1)=0,g(x)max=g(3)=12,
∴g(x)在[0,3]上的值域为[0,12].…(6分)
(2)由(1)知f(a)+4a<(a+2)f(x2)即为a2+2a<(a+2)f(x2).
当a+2=0时,a2+2a<(a+2)f(x2),即为a<0,不合题意.…(7分)
当a+2>0时,a2+2a<(a+2)f(x2)可转化为a<f(x2)=(x2-1)2-1.
∵$x∈(-2,-\frac{1}{2})$,∴${x^2}∈(\frac{1}{4},4)$,
∵f(x2)=(x2-1)2-1,∴当x2=1即x=-1时,f(x2)取得最小值-1.
∴a<-1,∵a+2>0,∴-2<a<-1.…(10分)
当a+2<0时,a2+2a<(a+2)f(x2)可转化为a>f(x2).
∵当$x∈(-2,-\frac{1}{2})$时,f(x2)<8,∴a≥8,又a<-2,∴不合题意.…(11分)
综上,a的取值范围为(-2,-1).…(12分)

点评 本题考查函数恒成立问题,着重考查函数单调性与最值问题的确定,突出分类讨论思想与等价转化思想的综合运用,分离参数是关键,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某产品的广告费支出x与销售额y(单位:百万元)之间有如表对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求线性回归方程;
(3)预测当广告费支出7(百万元)时的销售额.
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}g\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-{{n}_{x}}^{-2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设Sn是等差数列{an}前n项和,若a1=2,$\frac{{S}_{5}}{5}$-$\frac{{S}_{3}}{3}$=2,则数列{$\frac{1}{{S}_{n}}$}的前10项和T10=(  )
A.$\frac{8}{9}$B.$\frac{10}{11}$C.$\frac{11}{12}$D.$\frac{32}{33}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义在R上的函数f(x)满足:y=f(x-1)的图象关于(1,0)点对称,且当x≥0时恒有f(x-$\frac{3}{2}$)=f(x+$\frac{1}{2}$),当x∈[0,2)时,f(x)=ex-1,则f(2016)+f(-2015)=(  )
A.1-eB.e-1C.-1-eD.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.数列{an}满足下列条件:a1=1,a2=$\frac{1}{2}$,an+2=$\frac{{{a_n}+{a_{n+1}}}}{2}$,(n∈N*).
(1)设bn=an+1-an,求数列{bn}的通项公式;
(2)若cn=bn•log2|bn|,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用适当的方法表示下列集合:
(1)不小于1 且不大于17的质数组成的集合A;
(2)所有奇数组成的集合B;
(3)平面直角坐标系中,抛物线y=x2上的点组成的集合C;
(4)D={(x,y)|x+y=5,x∈N+,y∈N+};
(5)所有被4除余1的整数组成的集合E.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,已知a=2,A=120°,则△ABC的外接圆的半径为$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“0<x<1”是“log2(e2x-1)<2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=ax5+bx3+cx+1,f(2)=-1,求f(-2)=3.

查看答案和解析>>

同步练习册答案