精英家教网 > 高中数学 > 题目详情
椭圆的右焦点为,右准线为,离心率为,点在椭圆上,以为圆心,为半径的圆与的两个公共点是

(1)若是边长为的等边三角形,求圆的方程;
(2)若三点在同一条直线上,且原点到直线的距离为,求椭圆方程.
(1)。(2). 

试题分析:设椭圆的半长轴是,半短轴是,半焦距离是
由椭圆的离心率为,可得椭圆方程是,        2分
(只要是一个字母,其它形式同样得分,)
焦点,准线,设点
(1)是边长为的等边三角形,
则圆半径为,且到直线的距离是
到直线的距离是
所以,,所以
所以,圆的方程是。              6分
(2)因为三点共线,且是圆心,所以是线段中点,
点横坐标是得,,           8分
再由得:
所以直线斜率             10分
直线            12分
原点到直线的距离
依题意,所以
所以椭圆的方程是.            15分
点评:解答此类综合题时,应根据其几何特征熟练的转化为数量关系(如方程、函数),再结合代数方法解答,这就要学生在解决问题时要充分利用数形结合、设而不求、弦长公式及韦达定理综合思考,重视对称思想、函数与方程思想、等价转化思想的应用
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设圆的极坐标方程为,以极点为直角坐标系的原点,极轴为轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆上的一点作平行于轴的直线,设轴交于点,向量
(Ⅰ)求动点的轨迹方程;
(Ⅱ)设点 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的准线经过椭圆的左焦点,且经过抛物线与椭圆两个交点的弦过抛物线的焦点,则椭圆的离心率为_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面直角坐标系中,若双曲线的焦距为8,则  

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

焦点在轴上,渐近线方程为的双曲线的离心率为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数)的图象恒过定点,椭圆
)的左,右焦点分别为,直线经过点且与⊙相切.
(1)求直线的方程;
(2)若直线经过点并与椭圆轴上方的交点为,且,求内切圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知曲线Cy=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要实现不被曲线C挡住,则实数a的取值范围是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆mx2 + ny2 = 1与直线x+y-1=0交于A、B两点,过原点与线段AB中点的直线的斜率为,则=(  )
A.     B.        C.      D. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线的左右焦点分别为,且恰为抛物线的焦点,设双曲线与该抛物线的一个交点为,若是以为底边的等腰直角三角形,则双曲线的离心率为
A.B.C.D.

查看答案和解析>>

同步练习册答案