精英家教网 > 高中数学 > 题目详情
已知sinθ=a,其中θ是第四象限角,则sin2θ=
 
分析:由已知中sinθ=a,其中θ是第四象限角,根据同角三角函数关系,我们可以求出cosθ,代入二倍角公式,即可得到sin2θ的值.
解答:解:∵sinθ=a,θ是第四象限角
∴-1<a<0
则cosθ=
1-sin2θ
=
1-a2

∴sin2θ=2sin•cosθ=2a
1-a2
=-2
a2-a4

故答案为:2a
1-a2
(或-2
a2-a4
点评:本题考查的知识点是二倍角的正弦,其中根据已知条件求出θ的余弦值,是解答本题的切入点,熟练掌握对应的公式是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sin(ωx+φ),2),
b
=(1,cos(ωx+φ))(ω>0,0<φ<
π
4
)
,函数f(x)=(
a
+
b
)•(
a
-
b
)
的图象一个对称中心与它相邻的一条对称轴之间的距离为1,且其图象过点A(1,
7
2
)

(1)求f(x)的解析式;
(2)当x∈[-1,1]时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(x+
π
8
),sin2(x+
π
8
))
b
=(sin(x+
π
8
),1)
,函数f(x)=2
a
b
-1

(I)求函数f(x)的解析式,并求其最小正周期;
(II)求函数y=f(-
1
2
x)
图象的对称中心坐标与对称轴方程和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosωx,sinωx),
b
=(cosωx,
3
cosωx),其中(0<ω<2).函数f(x)=
a
b
-
1
2
,其图象的一条对称轴为x=
π
6

(1)求函数f(x)的表达式及单调递增区间;
(2)在△ABC中,a、b、c分别为角A、B、C的对边,S为其面积,若f(
A
2
)
=1,b=l,S△ABC=
3
,求BC边上的中线AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•安徽模拟)已知向量
a
=(4cosx,-1)
b
=(sin(x+
π
3
),
3
)
,且f(x)=
1
2
a
b

(1)求函数y=f(x)的解析式,并指出其单调递增区间;
(2)画出函数y=f(x)在区间[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩阵M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

查看答案和解析>>

同步练习册答案