如图一,平面四边形
关于直线
对称,![]()
.把
沿
折起(如图二),使二面角
的余弦值等于
.对于图二,完成以下各小题:![]()
(1)求
两点间的距离;
(2)证明:
平面
;
(3)求直线
与平面
所成角的正弦值.
(1)2;(2)证明详见解析;(3)
.
解析试题分析:(1)取
的中点
,先证得
就是二面角
的平面角,再在
中利用余弦定理即可求得
两点间的距离;(2)欲证线面垂直:
平面
,转化为证明线线垂直:
,
,即可;(3)欲求直线
与平面
所成角,先结合(1)中的垂直关系作出直线
与平面
所成角,最后利用直角三角形中的边角关系即可求出所成角的正弦值.
试题解析:(1)取
的中点
,连接
,
由
,得:
,
就是二面角
的平面角,
.
在
中,![]()
![]()
![]()
.
(2)由
,
,![]()
![]()
![]()
![]()
,
, 又![]()
平面
.
(3)方法一:由(1)知
平面![]()
平面![]()
∴平面
平面
平面
平面
,
作
交
于
,则
平面
,
就是
与平面
所成的角
.
方法二:设点
到平面
的距离为
,
∵
![]()
于是
与平面
所成角
的正弦为
.
方法三:以
所在直线分别为
轴,
轴和
轴建立空间直角坐标系
,
则
.
设平面
的法向量为n
,则
n
, n
,![]()
科目:高中数学 来源: 题型:解答题
如图,在三棱柱
中,
,顶点
在底面
上的射影恰为点
,
.
(1)证明:平面
平面
;
(2 )若点
为
的中点,求出二面角
的余弦值.![]()
(1)证明:平面
平面
;
(2)若点
为
的中点,求出二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知四棱锥P-ABCD,底面ABCD是
,边长为
的菱形,又
,且PD=CD,点M、N分别是棱AD、PC的中点.![]()
(1)证明:DN//平面PMB;
(2)证明:平面PMB
平面PAD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,正三棱柱
的底面边长是
,侧棱长是
,
是
的中点.![]()
(1)求证:
∥平面
;
(2)求二面角
的大小;
(3)在线段
上是否存在一点
,使得平面![]()
平面
,若存在,求出
的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.![]()
(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;
(2)用反证法证明:直线ME与BN是两条异面直线.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在长方体ABCDA1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.
(1)过P点在空间作一直线l,使l∥直线BD,应该如何作图?并说明理由;
(2)过P点在平面A1C1内作一直线m,使m与直线BD成α角,其中α∈
,这样的直线有几条,应该如何作图?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com