精英家教网 > 高中数学 > 题目详情

已知f(x)是定义域为R的偶函数,满足f(x+2)=f(x),如果f(x)在[1,2]上增函数,则下列命题正确的是


  1. A.
    f(x)在[0,1]上是增函数
  2. B.
    f(x)的图象关于直线x=1对称
  3. C.
    数学公式
  4. D.
    f(1)不是函数f(x)的最小值
B
分析:由题设条件可以得出,函数是一个偶函数,也是一个周期函数,又知其在[1,2]上增函数,考查四个选项,分别研究函数的单调性,对称性及最值,比较大小等,故可以先对函数的性质作综合研究,由于函数具有周期性,故可以先研究一个周期上的性质,再推理出整个定义域上的性质,然后再对四个选项的正误作出判断
解答:由题意f(x)是定义域为R的偶函数,f(x)在[1,2]上增函数
∴f(x)在[-2,-1]上是减函数,
又f(x+2)=f(x),
∴函数是一个周期是2的周期函数
故可得出f(x)在[0,1]上是减函数,f(x)在[-1,0]上是增函数,再由函数是偶函数,得f(x)在[0,1]上的图象与函数在[-1,0]上图象关于Y轴对称,故函数在[0,2]上的图象也关于直线x=1对称,再由周期性知,每一个x=n,n∈Z,这样的直线都是函数的对称轴
考察四个选项,B选项是正确的
故选B
点评:本题考查函数的周期性,奇偶性,单调性,是一个综合性较强的题,解题的关键是综合利用所给的性质对函数图象的特征作出判断,本题考查了推理判断的能力,数形结合的思想
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义域在R上的奇函数,若f(x)的最小正周期为3,且f(1)>0,f(2)=
2m-3m+1
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,f(-4)=-2,f(x)的导函数f′(x)的图象如图所示,若两正数a,b满足f(a+2b)<2,则
a+4
b+4
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的偶函数,若f(x+2)=f(x),且当x∈[1,2]时,f(x)=x2+2x-1,那么f(x)在[0,1]上的表达式是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,且在(0,+∞)内有1003个零点,则f(x)的零点的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的偶函数,若f(x)的最小正周期是2,且当 x∈[1,2]时,f(x)=x2-2x-1,那么f(x)在[0,1]上的表达式是
f(x)=x2-2x-1
f(x)=x2-2x-1

查看答案和解析>>

同步练习册答案