精英家教网 > 高中数学 > 题目详情

【题目】汽车厂生产三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.

轿车

轿车

轿车

舒适型

100

150

标准型

300

450

600

(1)求的值;

(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取

2辆,求至少有1辆舒适型轿车的概率;

(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:. 把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对 值不超过的概率.

【答案】(1) ;(2) ;(3).

【解析】试题分析:(1)根据用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10得每个个体被抽到的概率列出关系式得到的值;(2)由题意知本题是一个古典概型试验发生包含的事件数和满足条件的事件数,可以通过列举数出结果,根据古典概型的概率公式得到结果;(3)首先做出样本的平均数,做出试验发生包含的事件数,和满足条件的事件数,根据古典概型型的概率公式得到结果.

1)设该厂这个月共生产轿车辆,由题意得.

2)设所抽样中有辆舒适轿车,由题意因此抽取的容量为的样本中,有辆舒适型轿车,3辆标准型轿车.用山表示2辆舒适型轿车表示3辆标准轿车表示事件在该样本中任取2辆,其中至少有1辆,舒适轿车”,则基本事件空间包含的基本事件有

事件包含的基本事件有:

,共个,故,即所求概率为.

(3)样本平均数,设表示事件“从样本中任取一数该数与样本平均数之差的绝对不超过 ”,则基本事件空间中有个基本事件,事件包括的基本事件有:,共即所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:

甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中两个阴影部分均为扇形,且每个扇形圆心角均为,边界忽略不计)即为中奖·

乙商场:从装有2个白球、2个蓝球和2个红球的盒子中一次性摸出1球(这些球除颜色外完全相同),它是红球的概率是,若从盒子中一次性摸出2球,且摸到的是2个相同颜色的球,即为中奖.

(Ⅰ)求实数的值;

(Ⅱ)试问:购买该商品的顾客在哪家商场中奖的可能性大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)设f(x)的定义域为[0,3],值域为A; g(x)的定义域为[0,3],值域为B,且AB,求实数k的取值范围.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有两个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为大力提倡“厉行节约,反对浪费”,某市通过随机询问100名性别不同的居民是否能做到“光盘”行动,得到如下的列联表:( )

做不到“光盘”

能做到“光盘”

45

10

30

15

附:

P(K2k)

0.10

0.05

0.025

k

2.706

3.841

5.024

参照附表,得到的正确结论是

A在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别有关”

B在犯错误的概率不超过l%的前提下,认为“该市居民能否做到‘光盘’与性别无关”

C有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”

D有90%以上的把握认为“该市居民能否做到‘光盘’与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求不等式的解集;

(2)如果恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(sinx+cosx)2+2cos2x﹣2.
(1)求函数f(x)的最小正周期和单调增区间;
(2)当x∈[ ]时,求函数f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数设关于的方程个不同的实数解,则的所有可能的值为(

A. 3 B. 13 C. 46 D. 346

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【河南省部分重点中学2017届高三上学期第一次联考】在平面直角坐标系,已知圆.

直线且被圆得的弦求直线方程;

平面直角坐标系上的点,满足:存在过点无穷多对相互垂直的直线它们分别与

交,且直线得的弦长与直线得的弦长相等,试求所有满足条件的点

坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是边长为的棱形,且分别是的中点.

(1)证明:平面

(2)若二面角的大小为,求点到平面的距离.

查看答案和解析>>

同步练习册答案