精英家教网 > 高中数学 > 题目详情
17.某校要建一个面积为450m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图所示).问游泳池的长和宽分别为多少米时,占地面积最小?并求出占地面积的最小值.

分析 设游泳池的长为x(m),占地面积为y m2,则游泳池的宽为$\frac{450}{x}$ m,表示面积.利用基本不等式求解即可.

解答 解:设游泳池的长为x(m),占地面积为y  m2,则游泳池的宽为$\frac{450}{x}$   m.
由题意,得$y=(x+8)(\frac{450}{x}+4)=482+4(\frac{900}{x}+x)≥482+240=722$…(8分)
当且仅当$\frac{900}{x}=x$,即x=30时取等号.
答:游泳池的长为30m,宽为15m时,占地面积最小为722m2.…..(12分)

点评 本题考查函数的模型的选择与应用,基本不等式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.关于x的不等式(ax-1)(x+2a-1)>0的解集中恰含有3个整数,则实数a的取值集合是$\left\{{-\frac{1}{2},-1}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.时钟的时针走过了30分钟,则分针转过的角为-180°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若f(x)=ex+ae-x为奇函数,则满足不等式$f({x-1})<\frac{{{e^2}-1}}{e}$的x的取值范围为{x|x<2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱锥P-ABC中,PC⊥平面ABC,PC=4,AC=BC=3,∠ACB=90°.点D在线段AB上,AD=2DB.
(1)求异面直线BC与PD所成角的余弦值;
(2)求直线BC与平面PAB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等比数列{an}中,若a5+a6+a7+a8=15,a6a7=-5,$\frac{1}{a_5}+\frac{1}{a_6}+\frac{1}{a_7}+\frac{1}{a_8}$=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合U={0,1,2,3,4,5},M={1,4,5},N={0,3,5},则M∩(∁UN)=(  )
A.{1}B.{1,4}C.{1,4,5}D.{1,2,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≥2\\ y≥-1\end{array}\right.$,则目标函数z=2x+y(  )
A.有最小值-3,最大值5B.有最小值3,无最大值
C.有最大值5,无最小值D.既无最小值,也无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点A(1,-1),B(3,2),C(5,0),求点D的坐标,使直线CD⊥AB,且BC∥AD.

查看答案和解析>>

同步练习册答案