精英家教网 > 高中数学 > 题目详情
8.时钟的时针走过了30分钟,则分针转过的角为-180°.

分析 由时针与分针走过的时间相同可得分针所转过的角.

解答 解:时钟的时针走过了30分钟,则分针也走过30分钟,即分针顺时针旋转了180°,
∴分针转过的角为-180°.
故答案为:-180°.

点评 本题考查终边相同的角,理解题意是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在三棱柱ABC-A1B1C1中,侧面ACC1A1⊥平面ABC,AB⊥AC,AA1=2$\sqrt{2}$,A1C=CA=AB=2.
(1)若D是AA1的中点,求证:CD⊥平面ABB1A1
(2)若E是侧棱BB1上的点,且$\sqrt{3}$EB1=BB1,求二面角E-A1C1-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.△ABC中,已知A(-1,2),B(3,4),C(0,3),则AB边上的高CH所在直线的方程为2x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.△ABC的内角A,B,C的对边分别为a,b,c,且2$\sqrt{3}$(sin2A-sin2C)=(a-b)sinB,△ABC的外接圆半径为$\sqrt{3}$,则△ABC面积的最大值为(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{9\sqrt{3}}{8}$D.$\frac{9\sqrt{3}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知在△ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinA,c>$\sqrt{3}$a.
(1)求B的取值范围;
(2)当C=$\frac{2π}{3}$,AB边上的中线长为l时,求S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x+a)ex,其中a∈R
(1)若曲线y=f(x)在点A(0,a)处的切线与直线y=|2a-1|x平行,求l的方程;
(2)若?a∈[1,2],函数f(x)在(b-ea,2)上为增函数,求证:e2-3≤b<ea+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在平行四边形OABC中,O为坐标原点,过点C(1,3)作CD⊥AB于点D,
(1)求CD所在直线的方程;
(2)当D(4,2)时,求△OCD外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校要建一个面积为450m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图所示).问游泳池的长和宽分别为多少米时,占地面积最小?并求出占地面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若复数z满足z(1+i)=2i(i是虚数单位),$\overline z$是z的共轭复数,则$z•\overline z$=(  )
A.-2B.2C.2iD.-2i

查看答案和解析>>

同步练习册答案